Обобщения чисел, Понтрягин Л.С., 2003

Подробнее о кнопках "Купить"

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Обобщения чисел, Понтрягин Л.С., 2003.
    
   В книге представлен популярный рассказ о возможных обобщениях понятия числа. Сначала подробно рассмотрены обобщения действительных чисел, именно комплексные числа и кватернионы. Доказано, что других логически возможных величин, аналогичных действительным и комплексным числам и пригодных к употреблению в математике в роли чисел, кроме действительных и комплексных чисел, не существует. Затем рассматриваются другие обобщения понятия числа, уже не содержащие действительных чисел.

Обобщения чисел, Понтрягин Л.С., 2003


Основная теорема алгебры.
Здесь будет доказана основная теорема алгебры, утверждающая, что всякий многочлен с комплексными коэффициентами имеет по крайней мере один комплексный корень. При этом действительные числа считаются частным случаем комплексных чисел.

Основная теорема алгебры впервые была доказана Гауссом в 1799 году для частного случая многочленов с действительными коэффициентами. Гаусс показал, что всякий такой многочлен имеет по крайней мере один действительный или комплексный корень. С точки зрения современной абстрактной алгебры теорема эта показывает, что поле комплексных чисел алгебраически замкнуто: это значит, что, рассматривая корни алгебраических уравнений (т. е. корни многочленов) в этом поле, мы не можем получить новых чисел.

ОГЛАВЛЕНИЕ.
Предисловие.
Глава 1. Комплексные числа.
§1. Историческая справка.
§2. Определение комплексных чисел.
§3. Геометрическое изображение комплексных чисел.
Глава 2. Основная теорема алгебры.
§4. Пути в плоскости комплексного переменного.
§5. Комплексные функции комплексного переменного
Глава 3. Алгоритм Евклида.
§6. Деление многочленов.
§7. Разложение многочлена на множители.
§8. Общий наибольший делитель двух многочленов.
§9. Устранение кратных корней.
§10. Подсчет числа действительных корней многочлена на заданном отрезке.
Глава 4. Кватернионы.
§11. Векторные пространства.
§12. Евклидово векторное пространство.
§13. Кватернионы.
§14. Геометрические применения кватернионов.
Глава 5. Другие обобщения чисел.
§15. Алгебраические тела и поля.
§16. Поле вычетов по простому модулю р.
§17. Теорема Фробениуса.
Глава 6. Тополого-алгебраические тела.
§18. Топологическое тело.
§19. Топологические понятия в топологическом теле L.
§20. Теорема единственности.
§21. р-адические числа.
§22. Некоторые топологические свойства поля Кp0 р-адических чисел.
§23. Поле рядов над полем вычетов.
§24. О структуре несвязных локально компактных топологических тел.
Об авторе.

Купить .
Дата публикации:






Теги: :: :: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-05-29 18:45:00