Численное решение систем линейных алгебраических уравнений, Форсайт Д., Молер К., 1969

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Численное решение систем линейных алгебраических уравнений, Форсайт Дж., Молер К., 1969.

Авторы этой небольшой книги — ведущие американские специалисты в области прикладной математики. В ней описаны современные методы решения линейных алгебраических систем на электронных вычислительных машинах. Изложение характеризуется как высоким теоретическим уровнем, так и конкретной практической направленностью.
Книга будет весьма полезна всем, кто связан с работой на вычислительных машинах, а также студентам, инженерам и научным работникам различных специальностей.

Численное решение систем линейных алгебраических уравнений, Форсайт Дж., Молер К., 1969

ТИПЫ ВЫЧИСЛИТЕЛЬНЫХ ЗАДАЧ В ЛИНЕЙНОЙ АЛГЕБРЕ.

Мы сначала перечислим типы задач, рассматриваемых в этой книге или имеющих к ним отношение, а в дальнейшем обсудим их более детально. К вычислительным задачам относятся следующие.
(a) Решить линейную систему Ах=6, где А—данная невырожденная квадратная матрица порядка n (вещественная или, возможно, комплексная), b — данный вектор-столбец с n компонентами и х— неизвестный вектор-столбец с n компонентами.
(b) В предыдущей задаче иногда задается несколько правых частей b, например kt и требуется найти также k неизвестных векторов х. Если взять в качестве В (n * k) -матрицу правых частей, а в качестве X— соответствующую (n * k)-матрицу решений, то мы должны решить систему АХ—В, где матрица А определена в n. (а).
(c) Найти обратную матрицу А^-1 для данной невырожденной матрицы А.


СОДЕРЖАНИЕ.

Предисловие редактора перевода.
Предисловие.
1. О предполагаемом читателе и цели книги.
2. Нормы векторов и матриц.
3. Диагональная форма матрицы при эквивалентных преобразованиях с ортогональными матрицами.
4. Доказательство теоремы о приведении к диагональной форме.
5. Типы вычислительных задач в линейной алгебре.
6. Типы матриц, встречающихся в практических задачах.
7. Источники вычислительных задач линейной алгебры.
8. Обусловленность линейной системы.
9. Гауссовский метод исключения и LU-разложение.
10. Требования к перестановкам строк.
11. Масштабирование уравнений и неизвестных.
12. Модификации Краута и Дулитла.
13. Итерационное уточнение.
14. Вычисление определителя.
15. Почти вырожденные матрицы.
16. Программирование на АЛГОЛе-60.
17. Программы на ФОРТРАНе, расширенном АЛГОЛе и на PL/I.
18. Обращение матриц.
19. Пример: матрицы Гильберта.
20. Анализ ошибок округления в системе с плавающей запятой.
21. Ошибки округления в гауссовском методе исключения.
22. Сходимость итерационного уточнения.
23. Положительно определенные матрицы; ленточные матрицы.
24. Итерационные методы решения линейных систем.
25. Нелинейные системы уравнений.
26. Приложение.
Библиография.
Предметный указатель а.





Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Численное решение систем линейных алгебраических уравнений, Форсайт Д., Молер К., 1969 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - djvu - Яндекс.Диск.



Дата публикации:





Теги: :: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-26 10:54:46