Лекции по математике, том 14, теория чисел, Босс В., 2010

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Лекции по математике, Том 14, Теория чисел, Босс В., 2010.

   Излагаются основы теории чисел (теория делимости, сравнения, вычеты, диофантовы уравнения). Коротко затрагиваются новые веяния и взаимосвязи со смежными дисциплинами (алгебраический ракурс, алгоритмические проблемы, эллиптические кривые).
Изложение отличается краткостью и прозрачностью.
Для студентов, преподавателей, инженеров и научных работников.

Лекции по математике, Том 14, Теория чисел, Босс В., 2010


Арифметические гении.
Арифметика на математическом поле выделяется доступностью для подсознания. В некотором роде, конечно. Не всякому числовые фокусы по зубам, но существование необыкновенных вычислителей о многом говорит — не вполне ясно о чем. Выдающимися способностями арифметического толка обладали Эйлер, Гаусс, фон Нейман, причем Гаусс, по преданию, демонстрировал искусство счета еще в трехлетнем возрасте, когда математические познания не вмешивались в процесс.

Без особых математических знаний обходятся и эстрадные феномены-счетчики, не говоря об уникальных вычислителях с пониженными умственными способностями более широкого назначения. Тема слишком интересна и обширна, чтобы ее здесь подробно обсуждать. С одной стороны, известна масса алгоритмических уловок, позволяющих решать неприступные с виду задачи. С другой, — такие рецепты упираются все же в необходимость запоминания промежуточных результатов, превышающего порог среднестатистического индивидуума. Так что выход - того или иного калибра — за пределы стандарта здесь налицо. Но объяснения материалистического покроя не хотят мистики, и секрет видят в экстраординарной памяти.

ОГЛАВЛЕНИЕ.
Предисловие к «Лекциям».
Предисловие к четырнадцатому тому.
Глава 1. Отправные точки.
1.1. Мир состоит из побочных результатов.
1.2. Универсализм диофантовых уравнений.
1.3. Лабиринты натурального ряда.
1.4. На стыке с комбинаторикой.
1.5. Функция Аккермана.
1.6. Арифметические гении.
1.7. Табличные представления.
1.8. О границах теории.
1.9. Великая роль обозначений.
1.10. Геометрические мотивы.
Глава 2. Элементы классики.
2.1. Делимость.
2.2. Простые числа как первооснова.
2.3. Основная теорема арифметики.
2.4. Целая и дробная часть.
2.5. Мультипликативные функции.
2.6. Функции Мёбиуса и Эйлера.
2.7. Арифметика вычетов.
2.8. Рядовые задачи.
2.9. Две системы вычетов.
2.10. Теоремы Эйлера и Ферма.
2.11. Алгебраическая подоплека.
2.12. Цепные дроби.
2.13. Диофантовы приближения.
2.14. Задачи для обозрения.
Глава 3. Теория сравнений.
3.1. Диофантовы уравнения.
3.2. Сравнения первой степени.
3.3. Алгоритм возведения в степень.
3.4. Полиномиальные сравнения.
3.5. Сравнения по простому модулю.
3.6. Теорема Вильсона.
3.7. Степенные и квадратичные вычеты.
3.8. Символы Лежандра и Якоби.
3.9. Закон взаимности.
3.10. Теорема Шевалле.
3.11. Сумма четырех квадратов.
Глава 4. Первообразные корни.
4.1. Суть проблематики.
4.2. Структура мультипликативной группы.
4.3. Составные модули.
4.4. Круговые поля.
Глава 5. Алгоритмическая неразрешимость.
5.1. Алгоритмы и вычислимость.
5.2. Перечислимость и разрешимость.
5.3. Диофантов язык.
5.4. Примитивная арифметика.
5.5. Феномен недоказуемости.
5.6. Непротиворечивость.
5.7. Универсальные нумерации.
Глава 6. Алгебраическая ниша.
6.1. Уход в абстракцию и возвращение.
6.2. Многочлены.
6.3. Расширения полей.
6.4. Алгебраические расширения и числа.
6.5. Теория р-адических чисел.
6.6. Квадратичные формы.
6.7. О булевых структурах.
Глава 7. Эффективность счета.
7.1. PNP-проблематика.
7.2. Арифметические NP-задачи.
7.3. Задачи криптографии.
7.4. Тесты на простоту.
7.5. Полиномиальный тест AKS.
7.6. О практике вычислений.
7.7. Алгоритмы факторизации.
Глава 8. Распределение простых чисел.
8.1. Грубые причины.
8.2. Функции Чебышева и асимптотика.
8.3. По каналам дзета-функции.
8.4. Характеры Дирихле.
8.5. Постулат Бертрана.
Глава 9. От Ферма до Уайлса.
9.1. Общая картина.
9.2. Дивизоры Куммера.
9.3. Эллиптические кривые.
9.4. Гипотеза Таниямы и теорема Ферма.
9.5. Конгруэнтные числа.
Глава 10. Определения и результаты.
10.1. Простые и составные числа.
10.2. Теория делимости.
10.3. Арифметические функции.
10.4. Сравнения и вычеты.
10.5. Алгебра и теория чисел.
10.6. Первообразные корни.
10.7. «Арифметика» многочленов.
10.8. Расширения полей.
10.9. Теория р-адических чисел.
10.10. Диофантовы уравнения.
10.11. Диофантовы уравнения и вычеты.
10.12. Цепные дроби.
10.13. Алгоритмическая неразрешимость.
10.14. PNP-проблематика.
10.15. Распределение простых чисел.
10.16. Эллиптические кривые.
Сокращения и обозначения.
Литература.
Предметный указатель.

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-02-22 09:21:44