Контрпримеры в теории вероятностей, Стоянов Й., 2014

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Контрпримеры в теории вероятностей, Стоянов Й., 2014.

   Книга содержит около 300 разнообразных контрпримеров и примеров, относящихся к основным разделам теории вероятностей и случайных процессов. Во второе издание добавлен новый материал, расширен список литературы. Книгу можно активно использовать при изучении теории вероятностей и случайных процессов.
Предназначена для студентов, аспирантов и научных сотрудников физико-математических специальностей.

Контрпримеры в теории вероятностей, Стоянов Й., 2014


Независимость случайных величин.
В начале § 5 даны определения независимости двух случайных величин, а также независимости в совокупности (просто независимости) и попарной независимости для любого числа величин. Эти понятия выражаются в общем случае через совместную функцию распределения и маргинальные функции распределения, а в абсолютно непрерывном случае через соответствующие плотности.

Условная независимость случайных величин относительно заданной о-алгебры вводится также, как это делалось в § 3 при рассмотрении случайных событий.

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 16:46:05