Алгебраическая геометрия и теория чисел, Рациональные и эллиптические кривые, Острик В.В., Цфасман М.А., 2011

Подробнее о кнопках "Купить"

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Алгебраическая геометрия и теория чисел, Рациональные и эллиптические кривые, Острик В.В., Цфасман М.А., 2011.
     
   Многие естественные вопросы из теории чисел красиво решаются геометрическими методами, точнее говоря, методами алгебраической геометрии — области математики, изучающей кривые, поверхности и т. д., задаваемые системами полиномиальных уравнений. В книжке это показано на примере нескольких красивых задач теории чисел, связанных с теоремой Пифагора.
Текст книжки представляет собой значительно пополненную обработку записей лекций, прочитанных В. В. Остриком 18 марта 2000 года на Малом мехмате для школьников 9—11 классов и М. А. Цфасманом 19 марта 2000 года на торжественном закрытии LXIII Московской математической олимпиады школьников (запись Е. Н. Осьмовой, М. Ю. Панова).
Рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

Алгебраическая геометрия и теория чисел, Рациональные и эллиптические кривые, Острик В.В., Цфасман М.А., 2011


КОНГРУЭНТНЫЕ ЧИСЛА.
Вернёмся к самому первому примеру в книжке. Пусть рациональные числа X, Y, Z — длины сторон прямоугольного треугольника. Несмотря на то, что формулы (3'—4') были выведены нами для целых решений уравнения X2 + Y2 = Z2, они годятся и для всех рациональных решений, надо только числу г разрешить принимать любые рациональные значения.

Назовём рациональное число s конгруэнтным, если существует прямоугольный треугольник площади s с рациональными длинами сторон.

Возникает естественный вопрос: как выяснить, является ли данное число конгруэнтным? Задача описания всех конгруэнтных чисел приводит к глубоким и содержательным теоремам и гипотезам алгебраической геометрии. Мы как бы уже знаем ответ, но ещё не умеем его полностью обосновывать. Однако про некоторые числа известно (и доказано), что они конгруэнтные, а про некоторые — что они не конгруэнтные.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Алгебраическая геометрия и теория чисел, Рациональные и эллиптические кривые, Острик В.В., Цфасман М.А., 2011 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-09-13 07:09:02