Геометрия дискриминанта, Васильев В.А., 2017

Подробнее о кнопках "Купить"

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Геометрия дискриминанта, Васильев В.А., 2017.
     
   Квадратные трёхчлены х2 + рх + q образуют двупараметрическое семейство: каждому из них соответствует точка плоскости с координатами (p, q). Дискриминантное условие р2 — 4q = 0 можно рассматривать как уравнение кривой, разделяющей точки этой плоскости, соответствующие многочленам с разным числом корней. Аналогичные (но сложнее устроенные) разделяющие множества имеются и для уравнений более высоких степеней, а также для систем уравнений. Знать их геометрию очень полезно для исследования уравнений с параметрами и для решения многих других задач.
Текст брошюры представляет собой запись лекции, прочитанной автором 14 февраля 2015 г. на Малом мехмате МГУ для школьников 9-11 классов.

Геометрия дискриминанта, Васильев В.А., 2017


Дискриминант уравнения четвертой степени, или ласточкин хвост.
Перейдем к многочленам четвертой степени. Как и в кубическом случае, при помощи сдвигов аргумента х можно избавиться от члена, следующего после старшего, и рассматривать только многочлены вида х4 + ах2 + bх + с. Каждому такому многочлену соответствует точка (а,b,с) в трехмерном пространстве. А дискриминантное множество (множество таких точек, что соответствующий многочлен имеет кратные корни) задает в этом пространстве некоторую интересную поверхность, которая называется, ласточкин хвост (рис. 4).

Я сначала постараюсь объяснить (ничего не доказывая), как эта поверхность устроена и чему соответствуют разные части, на которые оказывается разбито пространство. А потом мы обсудим, как искать уравнение дискриминантной поверхности, а также рассмотрим топологический способ доказательства того, что какие-то уравнения лежат в разных компонентах ее дополнения.

Купить .
Дата публикации:






Теги: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-09-13 11:24:02