Математический анализ, Функции нескольких вещественных переменных, Части 1 и 2, Шилов Г.Е., 1972

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Математический анализ, Функции нескольких вещественных переменных, Части 1 и 2, Шилов Г.Е., 1972.  

Как и предыдущие книги того же автора — «Математический анализ (конечномерные линейные пространства)» (М„ 1969) и «Математический анализ (функции одного переменного)» (чч. 1—2—М., 1969, ч. 3—М., 1970), — эта книга представляет собою учебное пособие по курсу математического анализа. Она не является учебником и не следует официальным программам курса; она рассчитана в первую очередь на студентов, знакомых уже с элементами дифференциального и интегрального исчисления в желающих углубить свои знания. В гл. 1 строится теория дифференцирования для функций от конечного или даже бесконечного множества независимых переменных. В гл. 2 рассматриваются высшие производные. В гл. 3 строится теория интегрирования для функций нескольких переменных. На основе построенного аппарата в гл. 4 излагается классический векторный анализ, в гл. 5—классическая дифференциальная геометрия, которая развивается в гл. .6 в риманову геометрию. В гл. 7 излагаются избранные вопросы анализа на дифференцируемых многообразиях, в частности теория дифференциальных антисимметричных форм с соответствующими интегральными теоремами.

Математический анализ, Функции нескольких вещественных переменных, Части 1 и 2, Шилов Г.Е., 1972


ПРОИЗВОДНЫЕ ПЕРВОГО ПОРЯДКА.
В этой главе нашей задачей является построение дифференциального исчисления с. производными пока только первого порядку для функций многомерного аргумента. Основная идея построения есть идея линеаризации — выделения из приращения функции главной линейной части, благодаря чему локальное изучение функции с точностью до малых первого порядка становится вполне элементарным. Функции, для которых такая процедура возможна, и называются дифференцируемыми. Изучение простейших свойств дифференцируемых функций на основе линеаризации проводится единым образом для функции одного вещественного переменного, функции нескольких вещественных переменных и даже для функции бесконечного числа переменных (точнее, для функции, зависящей от точки нормированного линейного пространства).

ОГЛАВЛЕНИЕ.
Предисловие.
ЧАСТЬ ПЕРВАЯ. ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ.
Глава 1.Производные первого порядка.
Глава 2.Высшие производные.
Глава 3.Интегрирование в многомерных пространствах.
Глава 4.Связь между интегрированием и дифференцированием.
ЧАСТЬ ВТОРАЯ. ОТ ЛИНЕЙНЫХ ПРОСТРАНСТВ К МНОГООБРАЗИЯМ.
Глава 5.Классическая дифференциальная геометрия.
Глава 6.Риманова геометрия.
Глава 7.Дифференцирование и интегрирование на многообразиях.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математический анализ, Функции нескольких вещественных переменных, Части 1 и 2, Шилов Г.Е., 1972 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 21:38:10