Исследование пространственных отображений геометрическим методом, Севостьянов Е.А., 2014

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Исследование пространственных отображений геометрическим методом, Севостьянов Е.А., 2014.

   Монография посвящена изучению свойств пространственных отображений с неограниченной характеристикой квазиконформности, в частности, так называемых отображений с конечным искажением, активно исследуемых на протяжении последних 10-15 лет. Описан ряд свойств так называемых Q-отображений и кольцевых Q-отображений, являющихся подвидом отображений с конечным искажением и включающих класс отображений с ограниченным искажением по Решетнику. В частности, для Q-отображений приведены теоремы об их дифференцируемости почти всюду, принадлежности классу ACL, аналоги теорем типа Сохоцкого-Вейерштрасса, Лиувилля, Пикара, Иверсена и ряд других.
Для научных работников, аспирантов и студентов, специализирующихся в области теории функций и отображений.

Исследование пространственных отображений геометрическим методом, Севостьянов Е.А., 2014


О нормальных семействах кольцевых Q-отображений.
Как известно, нормальные семейства играют важную роль в теории отображений и находят различные приложения во многих разделах математики. Напомним, что семейство отображений нормально, если из любой последовательности его элементов можно выделить сходящуюся (локально равномерно) подпоследовательность отображений. В этой главе изложены основные факты, касающиеся нормальных семейств кольцевых Q-отображений и Q-отображений.

Глава построена следующим образом. В начале приведены основные сведения о нормальности и равностепенной непрерывности семейств, которые в теории отображений с ограниченным искажением и квазиконформных отображений считаются хорошо известными (§3.1). Затем изложены основные факты, касающиеся нормальности семейств: а) кольцевых Q-гомеоморфизмов (§3.2, 3.3); б) ограниченных открытых дискретных кольцевых Q-отображений (§3.5); в) открытых дискретных кольцевых Q-отображений, не принимающих значения некоторого множества положительной емкости (§3.6). В §3.7, 3.8 рассмотрен вопрос о равностепенной непрерывности и нормальности семейств кольцевых Q-гомеоморфизмов и Q-гомеоморфизмов в замыкании области. В §3.9 описано решение проблемы о равностепенной непрерывности обратных Q-гомеоморфизмов. Затем проанализированы вопросы, связанные с невозможностью ослабления различных условий, которые были задействованы при доказательстве основных результатов (§3.10).

ОГЛАВЛЕНИЕ.
Предисловие.
1. Дифференциальные свойства Q-отображений и кольцевых Q-отображеиий.
1.1. Предварительные сведения из анализа и теории отображений.
1.2. Общие сведения о квазиконформных отображениях и отображениях с ограниченным искажением.
1.3. Определение и примеры Q-отображений и кольцевых Q-отображений.
1.4. Дифференцируемость кольцевых Q-отображений почти всюду.
1.5. Основные следствия из оценки сверху для L(x, f).
1.6. Абсолютная непрерывность Q-отображеннй на линиях. Связь с классами Cоболева.
1.7. N -1 свойство Лузина Q-отображений. Аналог теоремы Боярского-Иванца о невырожденности якобиана.
1.8. Оценки внутренних дилатаций кольцевых Q-отображений.
1.9. Оценки внутренних дилатаций Q-отображений.
2. Устранение особенностей кольцевых Q-отображений.
2.1. Некоторые общие сведения об устранении особенностей известных классов отображений.
2.2. Основная лемма об устранении особенностей кольцевых Q-отображеннй.
2.3. Функции ограниченного и конечного среднего колебания. Основные результаты об устранении особенностей.
2.4. Аналоги теорем Сохоцкого—Вейерштрасса и Лиувилля.
2.5. Включение плоских Wloc-гомеоморфизмов с конечным искажением в класс кольцевых Q-отображеннй.
2.6. Аналог теоремы Пикара для Q-отображений.
2.7. Интегральное условие, характеризующее открытые дискретные кольцевые Q-отображения.
2.8. Уточненный аналог теоремы Лиувилля.
2.9. Аналог леммы Икома-Шварца для кольцевых Q-отображений.
2.10. Устранение особенностей весового модуля нуль.
2.11. Устранение особенностей отображений для областей с другими типами границ. Аналог теоремы Сребро—Byоринена.
2.12. О существенном значении некоторых условий, связанных с устранением особенностей.
2.13. Аналог теоремы Иверсена для кольцевых Q-отображений. Устранение изолированных особенностей локальных кольцевых Q-гомеоморфизмов.
2.14. Устранение особенностей кольцевых Q-отображений с ограничениями интегрального типа.
2.15. Открытость и дискретность отображений, удовлетворяющих некоторому обратному неравенству.
3. О нормальных семействах кольцевых Q-отображений.
3.1. О равностепенной непрерывности и нормальности семейств некоторых известных классов отображений.
3.2. Предварительные сведения. Основные леммы об оценках искажения кольцевых Q-гомеоморфизмов.
3.3. Равностепенная непрерывность и нормальность семейств кольцевых гомеоморфизмов. Основные результаты.
3.4. Теоремы сходимости Q-гомеоморфизмов.
3.5. Равностепенная непрерывность ограниченных открытых дискретных кольцевых Q-отображений.
3.6. Равностепенная непрерывность отображений, не принимающих значения положительной емкости.
3.7. Равностепенная непрерывность кольцевых Q-гомеоморфизмов в замыкании области.
3.8. Равностепенная непрерывность Q-гомеоморфизмов в замыкании области.
3.9. Равностепенная непрерывность обратных Q-гомеоморфизмов.
3.10. О существенном значении некоторых условий, связанных с равностепенной непрерывностью Q-отображений.
3.11. Равностепенная непрерывность кольцевых Q-гомеоморфизмов с ограничениями интегрального типа.
3.12. Равностепенная непрерывность открытых дискретных кольцевых Q-отображений с ограничениями интегрального тина.
3.13. Необходимые и достаточные условия равностепенной непрерывности. Аналог теоремы Миньйович.
3.14. Равностепенная непрерывность семейств отображений, не принимающих значения из переменного множества. Аналог теоремы Вуориисна.
3.15. Радиус инъективности локальных кольцевых Q-гомеоморфизмов. Равностепенная непрерывность.
4. Приложения теорий Q-отображений и кольцевых Q-отображений.
4.1. Вспомогательные сведения и исторические комментарии.
4.2. Неравенство типа Вяйсяля для отображений с конечным искажением длины.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Исследование пространственных отображений геометрическим методом, Севостьянов Е.А., 2014 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 17:55:02