Дискретная математика, Теория и практика решения задач по информатике, Окулов С.М., 2012.
В учебном пособии даны ключевые разделы дискретной математики с практической реализацией алгоритмических решений. Книга написана на основе лекционного курса и практических занятий для студентов факультета информатики Вятского государственного гуманитарного университета, а также спецкурса, читаемого автором для школьников, занимающихся информатикой по углубленной программе.
Для студентов высших учебных заведений, а также старшеклассников, углубленно изучающих информатику.

Счет и перебор.
Приведем несколько примеров, в которых требуется подсчитать количество объектов определенной природы.
Пример 1.1. Подсчитать количество последовательностей из натуральных чисел от 1 до я, в которые каждое из этих чисел входит по одному разу.
На первое место в последовательности можно записать любое из я чисел; на второе любое из оставшихся n-1 чисел и т. д. Общее количество последовательностей равно произведению 1 • 2 • 3 •... • (n - 1) • n. Это произведение обозначают я! (читается как я факториал).
При n = 7 значение n! = 5040, а при n = 8 — уже 40 320. Для вычисления и хранения чисел такого порядка в компьютере использовать величину типа Integer нельзя. Аналогично и с величинами типа LongInt, так как последнее значение n, для которого можно сохранить значение факториала, равно 12 (13! = 6 227 020 800). Вычисление для больших значений я рассмотрено в книге [20].
Купить .
Теги: учебник по математике :: математика :: Окулов