Задачи по стереометрии (векторный метод), Бунеева Н.А., Каргаполов А.М., 2006.
Пособие содержит основные методы для решения задач по стереометрии с помощью векторов. Рассмотрены задачи различной степени трудности.
Сборник будет полезен для учителей и школьников старших классов и всем, кто готовится к вступительным экзаменам по математике в ВУЗы.
§1. Определение вектора. Линейные операции над векторами. Компланарность векторов. Разложение вектора по базису.
§2. Угол между прямыми. Угол между векторами. Скалярное произведение векторов.
§3. Задачи.
Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Нулевой вектор коллинеарен любому вектору.
Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
Два коллинеарных вектора называются одинаково (противоположно) направленными, если их концы лежат по одну сторону (по разные стороны) от прямой, соединяющей их начала, или от общего начала.
Два вектора, лежащие на одной прямой, называются одинаково(противоположно) направленными, если один из лучей целиком содержится (не содержится целиком) в другом.
Два вектора называются равными если они имеют равные модули и одинаково направлены.
Примеры.
1. В основании четырехугольной пирамиды SABCD лежит трапеция ABCD, у которой отношение основания АВ к основанию CD равно 2:3. Точки К, L, М и N лежат на ребрах SA, SB, SC и SD соответственно. Известно, что SM = МС, SK : КА = 3:2, отрезки KN и LM параллельны. Найти длину отрезка KN, если LM = 5.
2. На диагонали AB1 грани АВВ1А1 треугольной призмы АВСА1ВУС1 расположена точка М так, что AM:МВ1 =5:4. Плоскость проходит через точку М и параллельна диагоналям А1С и ВС1. Определить, в каком отношении эта плоскость делит ребро СС1.
3. Точки М, N и Р соответственно - середины ребер АВ, CD и ВС тетраэдра ABCD. Через точку Р проведена плоскость, параллельная прямым DM и AN. В каком отношении эта плоскость делит ребро AD?
Ответ: 1:1.
4. В параллелепипеде ABCDA1B1C1D1 с основанием ABCD и боковыми ребрами АА1, ВВ1 СС1, DD1 точки М, N, F - середины ребер АВ, B1C1, DD1 соответственно. Плоскости A1BD и A1BF пересекают отрезок MN в точках К и L соответственно. Найти отношение MK:KL:LN.
Ответ:: 7:1:20.
Купить книгу Задачи по стереометрии (векторный метод), Бунеева Н.А., Каргаполов А.М., 2006 .
Купить книгу Задачи по стереометрии (векторный метод), Бунеева Н.А., Каргаполов А.М., 2006 .
Теги: математика :: задачи по стереометрии :: Бунеева :: Каргаполов
Смотрите также учебники, книги и учебные материалы:
- Задачи с параметрами, Линейные и квадратные уравнения, неравенства, системы, Локоть В.В., 2005
- Задачи с параметрами, Показательные и логарифмические уравнения, неравенства, системы, Локоть В.В., 2004
- Задачи с параметром и другие сложные задачи, Козко А.И., Чирский В.Г., 2007
- Задачи с величинами
- Задачи на умножение и деление
- Задачи и упражнения по математической логике и теории алгоритмов, Игошин В.И., 2007
- Задачи вступительных экзаменов по математике, Медведев Г.Н., 2004
- Задачи вступительных экзаменов, Егоров А.А., Тихомирова В.А., 2008