Олимпиадная математика, Задачи по теории графов с решениями и указаниями, 5-7 классы, Семендяева Н.Л., Федотов М.В., 2023.
Настоящее пособие составлено на основе олимпиадных задач по математике преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также указания и решения к большинству задач.
Рекомендуется школьникам 5-7 классов, интересующимся олимпиадными задачами, учителям математики, руководителям кружков и факультативов.
Примеры.
32 теннисиста играют по олимпийской системе (проигравший выбывает). За какое наименьшее количество встреч можно определить двух сильнейших теннисистов?
В стране Цифра есть девять городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, составленное из цифр — названий этих городов, делится на 3. Можно ли добраться самолётом из города 1 в город 9?
Можно ли, сделав несколько ходов конями из положения на рисунке слева, расположить их так, как показано на рисунке справа?
ОГЛАВЛЕНИЕ.
От редактора.
Предисловие.
Используемые обозначения.
Часть I. Теория и задачи.
1. Вводные задачи.
2. Степень вершины, подсчёт числа рёбер.
3. Связность графов. Эйлеровы графы.
4. Маршруты, цепи, циклы, двудольные графы.
5. Деревья.
6. Плоские графы.
7. Ориентированные графы.
Часть II. Указания и решения.
1. Вводные задачи.
2. Степень вершины, подсчёт числа рёбер.
3. Связность графов. Эйлеровы графы.
4. Маршруты, цепи, циклы, двудольные графы.
5. Деревья.
6. Плоские графы.
7. Ориентированные графы.
Ответы.
Список литературы.
Купить .
Купить .
Теги: задачник по математике :: математика :: Семендяева :: Федотов :: 5 класс :: 6 класс :: 7 класс
Смотрите также учебники, книги и учебные материалы:
- LVIII Московская математическая олимпиада, Сборник подготовительных задач, Дориченко С.А., Ященко И.В., 1994
- LVIII Московская городская математическая олимпиада школьников, 1995
- 61 Московская математическая олимпиада, Анисов С.С., Ковальджи А.К., Спивак А.С., 1998
- Сборник олимпиадных задач по высшей математике, Зюбин С.А., 2005
- Практические занятия по элементарной математике (2-й курс), Учебное пособие, Чулков П.В., 2012
- Олимпиада Ломоносов по математике, Сергеев И.Н., 2008
- Математические олимпиады, Азиатско-Тихоокеанская, Шёлковый путь, Кунгожин А.М., Кунгожин М.А., Байсалов Е.Р., Елиусизов Д.А., 2017
- Математическая олимпиада школьников города Омска имени Г.П. Кукина, Сборник задач, Адельшин А.В., 2009