Теория чисел, Михелович Ш.Х., 1967

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Теория чисел, Михелович Ш.Х., 1967.

   Из предисловия к первому изданию целесообразно напомнить, что книга написана в качестве учебного пособия по курсу теории чисел для физико-математических факультетов педагогических институтов и предназначается не только для студентов стационара, но и заочных факультетов. Поэтому изложение проводится по возможности в доступной форме, причем особое внимание уделяется разъяснению вводимых понятий.
Материал книги в основном излагается в объеме, предусмотренном программой, и в той же последовательности.
Во второе издание книги наряду с довольно многочисленными мелкими исправлениями и уточнениями внесен ряд более значительных изменений и дополнений.

Теория чисел, Михелович Ш.Х., 1967


XIX век. Развитие теории чисел в России.
а) Для развития теории чисел в XIX в. характерны, во-первых, фундаментальные работы Гаусса (которые мы уже отмечали) и дальнейшая разработка глубоких идей, изложенных в его трудах; далее, значительное укрепление аналитических методов исследования и успешное решение различных проблем в теории распределения простых чисел, наконец, создание новых направлений, а именно геометрической теории чисел и теории трансцендентных чисел.

б) Работы Гаусса не были сразу поняты его современниками, однако в дальнейшем они нашли многих продолжателей, в первую очередь среди немецких математиков.

Важную роль в разработке идей Гаусса, изложенных в его «Арифметических исследованиях», сыграл Дирихле, в частное и, его работы оказали большое влияние на развитие теории алгебраических чисел и аналитических методов в теории чисел.

ОГЛАВЛЕНИЕ.
Предисловие ко второму изданию.
Введение.
§1. Предмет и основные разделы теории чисел.
§2. Краткие сведения из истории развития теории чисел.
Глава I. Теория делимости.
§1. Делимость, деление с остатком.
§2. Наибольший общий делитель.
§3. Наименьшее общее кратное.
§4. Простые числа. Разложение на простые множители.
Глава II. Классы поданному модулю. Сравнения и классы.
§1. Сравнения и их основные свойства.
§2. Классы по данному модулю.
§3. Системы вычетов.
§4. Основные свойства функции Эйлера.
§5. Теоремы Эйлера и Ферма.
Глава III. Сравнения с неизвестной величиной.
§1. Классы решений сравнения произвольной степени.
§2. Сравнения первой степени.
§3. Правильные конечные цепные дроби.
§4. Решение сравнений первой степени с помощью цепных дробей.
§5. Системы сравнений первой степени.
§6. Сравнения n-ой степени по простому модулю.
§7. Сравнения n-ой степени по составному модулю.
§8. Сравнения второй степени общего вида.
§9. Общие сведения о двучленных сравнениях второй степени по нечетному простому модулю.
§10. Символ Лежандра.
Глава IV. Степенные вычеты.
§1. Показатели и их основные свойства.
§2. Существование и число классов, принадлежащих показателю.
§3. Индексы и их свойства.
§4. Применение индексов к решению сравнений.
Глава V. Арифметические приложения теории сравнений.
§1. Вычисление остатков при делении на данное число. Установление признаков делимости с помощью сравнений.
§2. Определение длины периода, получающегося при обращении обыкновенной дроби в десятичную.
§3. Проверка результатов арифметических действий.
Глава VI. Аппроксимация действительных чисел рациональными числами.
§1. Представление иррациональных чисел правильными бесконечными цепными дробями.
§2. Приближение действительного числа рациональными дробями с заданным ограничением для знаменателя.
§3. Квадратические иррациональности и периодические цепные дроби.
§4. Решение уравнения Пелля.
§5. Представление действительных чисел цепными дробями общего вида.
Глава VII. Алгебраические и трансцендентные числа.
§1. Иррациональные числа.
§2. Поле алгебраических чисел.
§3. Теорема Лиувилля. Трансцендентные числа.
Глава VIII. Числовые функции.
§1. Число и сумма делителей данного числа.
§2. Совершенные числа. Специальные простые числа.
§3. Функции [х] и {х}.
§4. Распределение простых чисел.
§5. Аддитивные проблемы теории чисел.
Указания и ответы к упражнениям.
Таблицы индексов.
Литература.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория чисел, Михелович Ш.Х., 1967 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 14:44:05