Курс высшей математики, том 3, часть 1, Смирнов В.И., 1974

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Курс высшей математики, Том 3, Часть 1, Смирнов В.И., 1974.

   В настоящем издании, в связи с добавлением нового материала, третий том разбит на две части. Первая часть содержит весь материал, относящийся к линейной алгебре, теории квадратичных форм и теории групп. В этой части наиболее существенные добавления относятся к теории групп. Большую помощь при составлении этих добавлений мне оказал Д. К. Фаддеев. Ему, в частности, принадлежит изложение материала, относящегося к выяснению простоты группы вращения и группы Лоренца, построение группы по структурным постоянным и интегрированию на группе [70, 81, 87, 88, 89, 90]. Приношу ему большую благодарность за помощь в работе над этой книгой.

Курс высшей математики, Том 3, Часть 1, Смирнов В.И., 1974


Основы матричного исчисления.
В формулах, приведенных в предыдущем номере, матрица входила в качестве нового символа, над которым мы могли производить и некоторые действия, аналогичные действиям над обычными числами. Это приводит нас к естественной мысли построить новую алгебру, которая годилась бы для символов, под которыми мы подразумеваем матрицы. Иначе говоря, мы будем толковать матрицу как новый вид числа, как некоторое гиперкомплексное число. Совершенно так же, как с помощью двух вещественных чисел мы пришли выше к построению чисел новой природы, а именно комплексных чисел вида a+ib, так и теперь мы с помощью n2 комплексных чисел aik, расставленных в виде квадратной таблицы, приходим к понятию нового числа — матрицы. Но только надо отметить их существенную разницу. А именно, мы видели, что над буквами, изображающими комплексные числа, можно производить все формальные операции алгебры, известные для вещественных чисел. Для матриц мы получим алгебру, существенно отличную от известной нам алгебры комплексных чисел. Существенным моментом, который вызывает это отличие, является некоммутативность умножения, т. е. зависимость результата умножения от порядка сомножителей. Мы переходим сейчас к установлению основных правил алгебры матриц, причем во многих отношениях руководящим путем для нас будут служить те результаты, которые мы получили выше, толкуя матрицу как таблицу линейного преобразования.

ОГЛАВЛЕНИЕ.
Предисловие к четвертому изданию.
Предисловие к девятому изданию.
ГЛАВА I ОПРЕДЕЛИТЕЛИ И РЕШЕНИЕ СИСТЕМ УРАВНЕНИЙ.
§ 1. Определитель и его свойства.
1. Понятие об определителе (7). 2. Перестановки (11). 3. Основные свойства определителя (16). 4. Вычисление определителя (21). 5. Примеры (23). 6. Теорема об умножении определителей (29). 7. Прямоугольные таблицы (33).
§ 2. Решение систем уравнений.
8. Теорема Крамера (36). 9. Общий случай систем уравнений (38). 10. Однородные системы (42). 11. Линейные формы (45). 12. n-мерное векторное пространство (47). 13. Скалярное произведение (53). 14. Геометрическая интерпретация однородных систем (55). 15. Случай неоднородной системы (57). 16. Определитель Грамма. Неравенство Адамара (60) 17. Системы линейных дифференциальных уравнений с постоянными коэффициентами (64). 18. Функциональные определители (68). 19. Неявные функции (72).
ГЛАВА II ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ И КВАДРАТИЧНЫЕ ФОРМЫ.
§ 3. Линейные преобразования.
20. Преобразование координат в трехмерном пространстве (76). 21. Общие линейные преобразования вещественного трехмерного пространства (80). 22. Ковариантные и контравариантные афинные векторы (87) 23. Понятие тензора (90). 24. Примеры афинных ортогональных тензоров (93). 25. Случай n-мерного комплексного пространства (95). 26. Основы матричного исчисления (99). 27. Характеристические числа матриц и приведение матриц к каноническому виду (104). 28. Унитарные и ортогональные преобразования (ПО). 29. Неравенство Коши — Буняковского (115). 30. Свойства скалярного произведения и нормы (117). 31. Процесс ортогонализации векторов (118).
§ 4. Квадратичные формы.
32. Преобразование квадратичной формы к сумме квадратов (120). 33. Случай кратных корней характеристического уравнения (124). 34. Примеры (129). 35. Классификация квадратичных форм (131). 36. формула Якоби (136). 37. Одновременное приведение двух квадратичных форм к сумме квадратов (137). 38. Малые колебания (139). 39. Экстремальные свойства собственных значений квадратичной формы (141). 40. Эрмитовские матрицы и формы Эрмита (143). 41. Коммутирующие эрмитовские матрицы (148). 42. Приведение унитарных матриц к диагональной форме (151). 43. Матрицы проектирования (155). 44. Функции от матриц (160). 45. Пространство с бесчисленным множеством измерений (163). 46. Сходимость векторов (168). 47. Ортонормированные системы (173). 48. Линейные преобразования с бесчисленным множеством переменных (176). 49. Функциональное пространство L (180). 50. Связь между пространствами l2 и L (182). 51. Линейные операторы в L2 (183).
ГЛАВА III ОСНОВЫ ТЕОРИИ ГРУПП И ЛИНЕЙНЫЕ ПРЕДСТАВЛЕНИЯ ГРУПП.
§ 5. Основы общей теории групп.
52. Группы линейных преобразований (188). 53. Группы правильных многогранников (191). 54. Преобразования Лоренца (194). 55. Перестановки (201). 56. Абстрактные группы (205). 57. Подгруппа (208) 58. Классы и нормальный делитель (212). 59. Примеры (215). 60. Изоморфные и гомоморфные группы (217). 61. Примеры (219). 62. Стереографическая проекция (220). 63. Унитарная группа и группа движения (222). 64. Общая линейная группа и группа Лоренца (228)
§ 6. Линейные представления групп.
65. Представление группы линейными преобразованиями (232). 66. Основные теоремы (236). 67. Абелевы группы и представления первого порядка (240). 68. Линейные представления унитарной группы с двумя переменными (242). 69. Линейные представления группы вращения (249). 70. Теорема о простоте группы вращения (252). 71. Уравнение Лапласа и линейные представления группы вращения (253). 72. Прямое произведение матриц (259). 73. Композиция двух линейных представлений группы (261). 74. Прямое произведение групп и его линейные представления (264). 75. Разбиение композиции Dj X Dj линейных представлений группы вращения (267). 76. Свойство ортогональности (273). 77. Характеры (276). 78. Регулярное представление группы (281). 79. Примеры представления конечных групп (283). 80. Представления линейной группы с двумя переменными (285) 81. Теорема о простоте группы Лоренца (289).
§ 7. Непрерывные группы.
82. Непрерывные группы. Структурные постоянные (290). 83. Бесконечно малые преобразования (294). 84. Группа вращения (298). 85. Бесконечно малые преобразования и представления группы вращения (299). 86. Представления группы Лоренца (303). 87. Вспомогательные формулы (306). 88. Построение группы по структурным постоянным (309). 89. Интегрирование на группе (311), 90. Свойство ортогональности. Примеры (316).
Алфавитный указатель.

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-04-20 03:40:28