Курс высшей математики, Том 2, Смирнов В.И., 1974.
Общий план настоящего издания второго тома тот же, что я в предыдущем издании. Существенные изменения внесены в первые две главы, посвященные дифференциальным уравнениям. Уже в п. 2 первой формулируется теорема существования и единственности решения при начальном условии, и остальное изложение проводится в непосредственной связи с этой теоремой. Значительно расширено содержание § 5 второй главы.
В § 9 третьей главы после изложения теории меры Жордана и исследования интеграла Римана излагаются теория меры Лебега, свойства измеримых функций и интеграл Лебега. В связи с этим § 16 шестой главы содержит изложение свойства класса L2 и теорию ортонормированных систем функций этого класса.
Первые три главы были прочтены С. М. Лозинским, от которого я получил ряд ценных указаний. Выражаю ему мою глубокую благодарность.
Общий интеграл и особое решение.
Выше мы определили общий интеграл, как решение дифференциального уравнения, содержащее произвольную постоянную. Пусть точка (x0, y0), входящая в условие (43), принадлежит области В теоремы А. Изменяя в начальном условии значение у& мы получим бесчисленное множество решений уравнения (42), и у0 может играть роль произвольной постоянной. При рассмотрении примеров дифференциальных уравнений мы получали общий интеграл, в который произвольная постоянная входила не как начальное значение у.
Понятие общего интеграла, строго говоря, нуждается в дополнительных разъяснениях. Мы не будем этим заниматься, поскольку естественной основою теоретического исследования дифференциальных уравнений является упоминаемая нами выше теорема А. Кроме того, весьма редко удается выразить общий интеграл через элементарные функции или квадратуры. Естественно понимать под общим интегралом такое решение дифференциального уравнения (42), содержащее произвольную постоянную, из которого можно получить все решения, определяемые теоремой А при начальных условиях (х0, у0), заполняющих какую-либо область плоскости XOY.
ОГЛАВЛЕНИЕ.
Предисловие к девятнадцатому изданию.
ГЛАВА I ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ.
§1. Уравнения первого порядка.
§2. Дифференциальные уравнения высших порядков и системы уравнений.
ГЛАВА II ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ДОПОЛНИТЕЛЬНЫЕ СВЕДЕНИЯ ПО ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.
§3. Общая теория и уравнения с постоянными коэффициентами
§4. Интегрирование с помощью степенных рядов.
§5. Дополнительные сведения по теории дифференциальных уравнений.
ГЛАВА III КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ И ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.
§6. Кратные интегралы.
§7. криволинейные интегралы.
§8. Несобственные интегралы и интегралы, зависящие от параметра.
§9. Мера и теория интегрирования
ГЛАВА IV ВЕКТОРНЫЙ АНАЛИЗ И ТЕОРИЯ ПОЛЯ.
§10. Основы векторной алгебры.
§11. Теория поля.
ГЛАВА V ОСНОВЫ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ.
§12. Кривые на плоскости и в пространстве.
§13. Элементы теории поверхностей.
ГЛАВА VI РЯДЫ ФУРЬЕ
§14. Гармонический анализ.
§15. Дополнительные сведения из теории рядов Фурье.
§16. Интеграл Фурье и кратные ряды Фурье.
ГЛАВА VII УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ МАТЕМАТИЧЕСКОЙ ФИЗИКИ.
§17. Волновое уравнение.
§18. Телеграфное уравнение.
§19. Уравнение Лапласа.
§20. Уравнение теплопроводности.
Алфавитный указатель.
Купить .
Теги: учебник по высшей математике :: высшая математика :: Смирнов
Смотрите также учебники, книги и учебные материалы:
- Элементы выпуклого и сильно выпуклого анализа, Половинкин Е.С., Балашов М.В., 2007
- Некоторые вопросы сложности алгоритмов, учебное пособие, Сапоженко А.А., 2001
- Краткий курс теории аналитических функций, Маркушевич А.И.
- Математика, Её содержание, методы и значения, Том первый, Александров А.Д., Колмогоров А.Н., Лаврентьев М.А., 1956
- Векторный анализ, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002
- Введение в теорию вероятностей, Колмогоров А.Н., Журбенко И.Г., Прохоров А.В., 2015
- Алгебра и начала математического анализа, 10-11 классы, базовый уровень, методическое пособие для учителя, Мордкович А.Г., Семенов П.В., 2010
- Алгебра, 9 класс, часть 1, учебник для учащихся общеобразовательных учреждений, Мордкович А.Г., 2010