Специальные методы оптимизации, Колбин В.В., 2014.
Практические задачи прикладной математики обладают рядом особенностей, среди которых большая размерность (бесконечномерность), дискретность искомых переменных и стохастичность условий.
В учебном пособии представлены наиболее эффективные методы оптимизации соответствующих задач и алгоритмы их решения. Пособие предназначено для обучения бакалавров, специалистов, магистров и аспирантов. Инженеры и исследователи в областях экономической кибернетики, прикладной математики, автоматизации управления и информатики имеют возможность использовать предложенные методы оптимизации в практической деятельности.
РЕШЕНИЕ ЗАДАЧИ ИНТЕРВАЛЬНОГО ПРОГРАММИРОВАНИЯ.
Пункт 5.1. Рассмотрим задачу интервального линейного программирования
max сх;
b- < Ах <b+,
где А — матрица размерности (тхп); b-, b+ — m-мерные векторы; с — n-мерный вектор.
Задача интервального линейного программирования может интерпретироваться как общая задача ЛП, если двухсторонние ограничения рассматривать как пару отдельных условий, а каждую свободную переменную представить в виде разности неотрицательных переменных. Но эта процедура увеличивает размерность задачи. С другой стороны, задача интервального программирования имеет многочисленные приложения, например, в производственном планировании, т. е. представляют собой интерес специальные методы для решения этой задачи.
Опишем один подход к решению задачи (5.1), основанный на результатах [1], основой которой является принцип разложения Данцига — Вулфа.
ОГЛАВЛЕНИЕ.
Предисловие.
Глава 1 Декомпозиция Данцига — Вулфа.
§1. Метод декомпозиции Данцига — Вулфа.
§2. Двойственный подход в блочном программировании.
§3. Решение транспортной задачи методом разложения.
§4. Декомпозиции для задачи с блочно-лестничной структурой.
§5. Решение задачи интервального программирования.
§6. Распространение принципа декомпозиции Данцига — Вулфа на задачи нелинейного программирования.
Глава 2 Параметрическая декомпозиция.
§7. Метод Корнай — Липтака.
§8. Метод решения блочно-сепарабельных нелинейных задач.
§9.0 параметрической декомпозиции задачи распределения ресурсов.
§10. Один метод параметрической декомпозиции для задач линейного и сепарабельного программирования.
Глава 3 Декомпозиция на основе разделения переменных.
§11. Метод релаксации ограничений для задачи выпуклого программирования.
§12. Метод Риттера для блочной задачи со связывающими переменными и связывающими ограничениями.
§13. Метод расчленения Розена для задач линейного программирования.
§14. Метод расчленения Розена для нелинейного программирования.
§15. Метод Вендерса для специальной задачи математического программирования.
Глава 4 Декомпозиция на основе методов оптимизации.
§16. Использование метода покомпонентного спуска для решения задач математического программирования и оптимального управления.
§17. Методы условного градиента и декомпозиция задач математического программирования и оптимального управления.
§18. Использование штрафной константы в декомпозиции задач математического программирования.
§19. Декомпозиция на основе модификаций симплекс-метода.
Глава 5 Декомпозиция и агрегирование.
§20. Метод агрегирования для решения системы линейных уравнений.
§21. Метод агрегирования для блочной задачи линейного программирования.
§22. Декомпозиция и агрегирование на основе метода возмущений.
§23. Метод декомпозиции на основе агрегирования переменных из разных блоков.
Глава 6 Оптимизация бесконечномерных задач.
§24. Основные понятия и утверждения.
§25. Обоснование численных методов решения бесконечномерных задач программирования.
§26. Численные методы решений.
§27. Сепарабельные бесконечномерные задачи программирования.
Глава 7 Дискретное математическое программирование.
§28. Геометрическая интерпретация методов целочисленного линейного программирования.
§29. Эквивалентные формы и теоретико-групповая интерпретация задач дискретного программирования.
§30. Алгоритм решения задачи целочисленного линейного программирования.
§31. Условие оптимальности и метод поиска для дискретных задач оптимизации.
§32. Алгоритм для решения смешанно-целочисленных задач линейного программирования.
§33. Решение большой задачи целочисленного линейного программирования методом динамического программирования.
Глава 8 Методы и модели программирования в условиях неполной информации.
§34. Модель Катаока и методы ее решения.
§35. Метод решения Элмаграби.
§36. Квазиградиентные методы.
§37. Двухэтапная задача Данцига — Маданского.
Глава 9 Задачи оптимизации на полных векторных решетках.
§38. Бинарные отношения на векторных решетках.
§39. Семейство функций Ф(Л).
§40. Бинарные отношения на ПВР и ОФПI.
§41. Задачи ОМП и МППШ в условиях ПВР.
§42. Свойства задач ОМП и МППШ на ВПР.
§43. Задачи бинарной оптимизации на ПВР.
§44. Задача математического программирования на ПВР (МППВР).
§45. Свойства задач МППВР и задач ПП.
§46. Виды задач на ПВР.
Приложения.
Приложение 1 Определения и свойства бинарных отношений.
Приложение 2 Основные определения из теории векторных решеток.
Приложение 3 Задачи программирования на ПВР.
Приложение 4 Виды и свойства бинарных отношений.
Литература.
Купить .
Теги: учебник по математике :: математика :: Колбин
Смотрите также учебники, книги и учебные материалы:
- Классические средние в арифметике и в геометрии, Блинков А.Д., 2013
- Числовые и функциональные ряды, Апарина Л.В., 2012
- Численные методы в примерах и задачах, Киреев В.И., Пантелеев А.В., 2015
- Теория функций комплексного переменного и операционное исчисление в примерах и задачах, Пантелеев А.В., Якимова А.С., 2015
- Ряды, Карасева Р.Б., 2016
- Решение вариационных задач строительной механики в системе Mathematica, Кристалинский Р.Е., Шапошников Н.Н., 2010
- Решебник к сборнику задач по курсу математического анализа Бермана, 2011
- Математика, 2 класс, Моро М.И., Волкова С.И., Степанова С.В., 2016