Суммы квадратов

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Суммы квадратов.

   Зачем складывать квадраты целых чисел? Почему бы не складывать их кубы или 66-е степени? Вопросы эти весьма серьёзны и встают перед каждым, кто начинает изучать математику. Из огромного разнообразия задач не все достойны пристального внимания. Задача о сумме квадратов — в высшей степени достойна. К сожалению для философа, это трудно объяснить, не рассказав её решение и не углубившись тем самым в детали.
«Детали» — это критерий того, какие натуральные числа представимы в виде суммы квадратов двух целых чисел. В одном из доказательств этого критерия будут использованы не только «обычные» целые числа, но и числа комплексные — прекрасный пример применения абстрактной теории к конкретной арифметической задаче! Хотя эта статья содержит лишь малую часть теории делимости алгебраических чисел, надеемся, её очарование никого не оставит равнодушным.

Суммы квадратов


Какие числа — суммы двух квадратов?
Теорема Ферма—Эйлера. Любое простое число p = 4n + 1, где n — натуральное число, представимо в виде суммы квадратов двух натуральных чисел.

Эту теорему сформулировал Пьер Ферма (1601-1665), а доказал её (при помощи любимого Ферма метода бесконечного спуска) Леонард Эйлер (1707-1783). Перед
тем, как её доказывать, сформулируем критерий того, какие числа представимы в виде суммы двух квадратов.

Произведение суммы двух квадратов на сумму двух квадратов — сумма двух квадратов; квадрат любого простого числа — тоже сумма двух квадратов (один из них равен 0). Теорема 1 и упражнение 11 приводят к следующему выводу: натуральное число представимо в виде суммы квадратов двух целых чисел тогда и только тогда, когда в его разложение на простые множители любой простой множитель, дающий остаток 3 при делении на 4, входит в чётной степени.

Этот критерий впервые был сформулирован голландцем Альбером Жираром (1595-1632) в следующем виде: натуральное число представимо в виде суммы двух квадратов тогда и только тогда, когда оно является или квадратом, или числом 2. или простым числом, которое на 1 больше, чем некоторое кратное 4, или произведением нескольких вышеперечисленных чисел. Скорее всего, Жирар опирался лишь на изучение таблиц и не умел доказывать необходимость и достаточность своих условий.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Суммы квадратов - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-16 02:33:43