Высшая математика в упражнениях и задачах, Часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986.
Содержание II части охватывает следующие разделы программы: кратные и криволинейные интегралы, ряды, дифференциальные уравнения, теорию вероятностей, теорию функций комплексного переменного, операционное исчисление, методы вычислений, основы вариационного исчисления.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.
Примеры.
Вычислить массу квадратной пластинки со стороной а, плотность которой в любой точке пропорциональна квадрату расстояния этой точки от одной из вершин квадрата.
Вычислить массу круглой пластинки радиуса r, если плотность ее обратно пропорциональна расстоянию точки от центра и равна б на краю пластинки.
Вычислить статический момент пластинки, имеющей форму прямоугольного треугольника с катетами |ОА| = а, |OB| = b, относительно катета ОА, если плотность ее в любой точке равна расстоянию точки от катета ОА.
ОГЛАВЛЕНИЕ.
Глава I. Двойные и тройные интегралы.
§1. Двойной интеграл в прямоугольных координатах.
§2. Замена переменных в двойном интеграле.
§3. Вычисление площади плоской фигуры.
§4. Вычисление объема тела.
§5. Вычисление площади поверхности.
§6. Физические приложения двойного интеграла.
§7. Тройной интеграл.
§8. Приложения тройного интеграла.
§9. Интегралы, зависящие от параметра. Дифференцирование и интегрирование под знаком интеграла.
§10. Гамма-функция. Бета-функция.
Глава II. Криволинейные интегралы и интегралы по поверхности.
§1. Криволинейные интегралы по длине дуги и по координатам.
§2. Независимость криволинейного интеграла II рода от контура интегрирования. Нахождение функции по ее полному дифференциалу.
§3. Формула Грина.
§4. Вычисление площади.
§5. Поверхностные интегралы.
§6. Формулы Стокса и Остроградского—Гаусса. Элементы теории поля.
Глава III. Ряды.
§1. Числовые ряды.
§2. Функциональные ряды.
§3. Степенные ряды.
§4. Разложение функций в степенные ряды.
§5. Приближенные вычисления значений функций с помощью степенных рядов.
§6. Применение степенных рядов к вычислению пределов и определенных интегралов.
§7. Комплексные числа и ряды с комплексными числами.
§8. Ряд Фурье.
§9. Интеграл Фурье.
Глава IV. Обыкновенные дифференциальные уравнения.
§1. Дифференциальные уравнения первого порядка.
§2. Дифференциальные уравнения высших порядков.
§3. Линейные уравнения высших порядков.
§4. Интегрирование дифференциальных уравнений с помощью рядов.
§5. Системы дифференциальных уравнений.
Глава V. Элементы теории вероятностей.
§1. Случайное событие, его частота и вероятность. Геометрическая вероятность.
§2. Теоремы сложения и умножения вероятностей. Условная вероятность.
§3. Формула Бернулли. Наивероятнейшее число наступлений события.
§4. Формула полной вероятности. Формула Бейеса.
§5. Случайная величина и закон ее распределения.
§6. Математическое ожидание и дисперсия случайной величины
§7. Мода и медиана.
§8. Равномерное распределение.
§9. Биномиальный закон распределения. Закон Пуассона.
§10. Показательное (экспоненциальное) распределение. Функция надежности.
§11. Нормальный закон распределения. Функция Лапласа.
§12. Моменты, асимметрия и эксцесс случайной величины.
§13. Закон больших чисел.
§14. Теорема Муавра—Лапласа.
§15. Системы случайных величин.
§16. Линии регрессии. Корреляция.
§17. Определение характеристик случайных величин на основе опытных данных.
§18. Нахождение законов распределения случайных величин на основе опытных данных.
Глава VI. Понятие об уравнениях в частных производных.
§1. Дифференциальные уравнения первого порядка в частных производных.
§2. Типы уравнений второго порядка в частных производных. Приведение к каноническому виду.
§3. Уравнение колебания струны.
§4. Уравнение теплопроводности.
§5. Задача Дирихле для круга.
Глава VII. Элементы теории функций комплексного переменного.
§1. Функции комплексного переменного.
§2. Производная функции комплексного переменного.
§3. Понятие о конформном отображении.
§4. Интеграл от функции комплексного переменного.
§5. Ряды Тейлора и Лорана.
§6. Вычисление вычетов функций. Применение вычетов к вычислению интегралов.
Глава VIII. Элементы операционного исчисления.
§1. Нахождение изображений функций.
§2. Отыскание оригинала по изображению.
§3. Свертка функций. Изображение производных и интеграла от оригинала.
§4. Применение операционного исчисления к решению некоторых дифференциальных и интегральных уравнений.
§5. Общая формула обращения.
§6. Применение операционного исчисления к решению некоторых уравнений математической физики.
Глава IX. Методы вычислений.
§1. Приближенное решение уравнений.
§2. Интерполирование.
§3. Приближенное вычисление определенных интегралов.
§4. Приближенное вычисление кратных интегралов.
§5. Применение метода Монте-Карло к вычислению определенных и кратных интегралов.
§6. Численное интегрирование дифференциальных уравнений.
§7. Метод Пикара последовательных приближений.
§8. Простейшие способы обработки опытных данных.
Глава X. Основы вариационного исчисления.
§1. Понятие о функционале.
§2. Понятие о вариации функционала.
§3. Понятие об экстремуме функционала. Частные случаи интегрируемости уравнения Эйлера.
§4. Функционалы, зависящие от производных высших порядков.
§5. Функционалы, зависящие от двух функций одной независимой переменной.
§6. Функционалы, зависящие от функций двух независимых переменных.
§7. Параметрическая форма вариационных задач.
§8. Понятие о достаточных условиях экстремума функционала.
Ответы.
Приложение.
Купить .
Теги: задачник по высшей математике :: высшая математика :: Данко :: Попов :: Кожевникова
Смотрите также учебники, книги и учебные материалы:
- Основной государственный экзамен по МАТЕМАТИКЕ, 9 класс, 2019
- Математика, тесты для тематичексого оценивания знаний, Барахов К.П., Брысина И.В., Головченко А.В., Деменко В.Ф., Николаев А.Г., Рвачов В.А., Сипченко Т.Н., Томилова Е.П., Ушакова Е.Г., Хоменко В.В.
- Математические задачи для абитуриентов, Круликовский Н.Н., 1973
- Математика, Сборник задач по базовому курсу, Золотарёва Н.Д., Попов Ю.А., Семендяева Н.Л., Федотов М.В., 2010
- Сборник физических задач по общему курсу высшей математики, Ветрова В.Т., 1997
- ОГЭ-2019, математика, 20 тренировочных вариантов экзаменационных работ для подготовки к основному государственному экзамену, Ященко И.В., 2019
- Математика, тригонометрические уравнения и неравенства, учебное пособие для СПО, Далингер В.А., 2019
- Математика, Обратные тригонометрические функции, решение задач, учебное пособие для СПО, Далингер В.А., 2019