Геометрия на подвижных чертежах, Сгибнев А.И., 2019.
Девятнадцатая книжка серии «Школьные математические кружки» посвящена решению геометрических задач с помощью программ динамической геометрии— «Геогебра», «Живая математика», «Математический конструктор». Изучив книгу, школьник научится работать в программе динамической геометрии, строить и изучать подвижные чертежи, освоит основные приёмы математического эксперимента при решении сложных задач — выдвижение, проверка и уточнение гипотез, — а также повторит основные темы и идеи курса планиметрии. Книжка адресована школьным учителям математики и руководителям математических кружков.
Экспериментальная математика. Есть подход к решению задач по математике, который можно назвать экспериментальным. Он состоит в том, что решающий рассматривает частные случаи предложенной конструкции, пытается угадать стоящую за ними закономерность, а потом доказать её в общем виде (подробнее см. [13, 20]). В арифметике, алгебре и комбинаторике это естественно делать с помощью перечней, графиков и таблиц [12]. В геометрии раньше это было возможно с помощью рисования нескольких чертежей или рассмотрения специальных случаев — правильный треугольник вместо произвольного и т.д. (см. также [9, 14]). В последние десятилетия появилось новая возможность: в программах динамической геометрии мы можем нарисовать всего один подвижный чертёж, а потом движением мыши получить из него целую серию «обычных» статических чертежей [8]! Тем самым мы легко получаем серию частных случаев, а также видим все возможные варианты конфигурации (остроугольный/тупоугольный треугольник, выпуклый/невыпуклый четырёхугольник/самопересекающаяся ломаная и т.д.), часть из которых легко потерять при статическом рассмотрении.
Оглавление.
Предисловие.
Занятие 1. Строим подвижные чертежи.
Занятие 2. Строим траектории точек и линий.
Занятие 3. Метод освобождения точки.
Занятие 4. Измерения на чертеже. Задачи на минимум и максимум-1.
Занятие 5. Оживляем траектории.
Занятие 6. Ищем взаимосвязи и инварианты.
Занятие 7. Задачи на минимум и максимум-2.
Занятие 8. Открытые задачи. Конференция.
Дополнительные задачи.
Ответы, решения, указания к дополнительным задачам.
Словарик.
Литература и веб-ресурсы.
Раздаточный материал.
Купить .
Купить .
Теги: Сгибнев :: 2019 :: геометрия
Смотрите также учебники, книги и учебные материалы:
- Нескучная математика для детей от 10 лет, Андреева А.О., 2018
- 99 секретов математики, Юлия Кита, 2018
- Математика, Гусев И.Е., 2018
- Задачи по математике для практических занятий в физико-математической школе, Воронин В.В., Воронина Т.А., 2016
- Задания отборочных этапов олимпиады школьников, «Покори Воробьёвы горы!», по математике, 2013, 2014, 2015, 2016
- Дидактические материалы по геометрии, 7 класс, к учебнику Атанасяна Л.С. «Геометрия, 7 9 классы», Мельникова Н.Б., Захарова Г.А., 2017
- Геометрические недоразумения, книжка для родителей младших школьников, Локшин А.А., Иванова Е.А., 2018
- Теория и методика формирования элементарных математических представлений у детей дошкольного возраста, Шаурко И.В., Левчук З.К., 2018