Элементы векторного анализа, методические указания по математическому анализу, Коваленко Л.И., 2001

Подробнее о кнопках "Купить"

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Элементы векторного анализа, Методические указания по математическому анализу, Коваленко Л.И., 2001.

  Излагаются основные понятия векторного анализа, формулы Остроградского–Гаусса и Стокса, приемы набла-техники. Доказываются первая и вторая формулы Грина в пространстве.
Все демонстрируется на задачах, решение которых приводится.
Система координат предполагается декартовой прямоугольной, причем правой.
В настоящее издание добавлено несколько задач, требующих умения работать с терминами поля как в векторной, так и в координатной форме.

Элементы векторного анализа, Методические указания по математическому анализу, Коваленко Л.И., 2001

Скалярные и векторные поля. Производная по направлению и градиент скалярного поля.
Определение 1. Говорят, что в области G задано скалярное (или векторное) поле, если каждой точке М G поставлено в соответствие некоторое число F(M) (или вектора (М)).
Поле температуры внутри некоторого нагретого тела - это скалярное поле. Поле гравитационное — векторное поле.

Если дано некоторое скалярное или векторное поле в области G  R3, то, введя систему координат, можно представить скалярное поле в виде некоторой функции F(x,y, z), а векторное поле — в виде вектор-функции а = = (Р(х, у, z), Q(x, у, z), R(x, y, z)).
Пусть в области G С К3 задано скалярное поле f(M).
Проведем луч через точку M0 G в направлении вектора 1, |1| = 1.

ОГЛАВЛЕНИЕ
§ 1. Скалярные и векторные поля. Производная по направлению и градиент скалярного поля
§ 2. Дивергенция и поток векторного поля. Формула Остроградского-Гаусса в терминах поля
§ 3. Соленоидальные векторные поля
§ 4. Циркуляция векторного поля. Потенциальные векторные поля
§ 5. Ротор векторного поля. Формула Стокса в терминах поля
Механический смысл ротора
§ 6. Однократное применение оператора Гамильтона
Правила работы с
Градиент одного вектора по другому
§ 7. Повторное применение оператора Гамильтона
Формулы Грина в R3
Список литературы.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Элементы векторного анализа, методические указания по математическому анализу, Коваленко Л.И., 2001 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу Элементы векторного анализа, Методические указания по математическому анализу, Коваленко Л.И., 2001 - pdf - depositfiles.

Скачать книгу Элементы векторного анализа, Методические указания по математическому анализу, Коваленко Л.И., 2001 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-05-09 16:10:07