Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012

Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012.
 
   Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах и конкурсах Всесоюзной заочной математической школы для учащихся старших классов (ныне ВЗМШ). Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждения и дополнительные вопросы для самостоятельного обдумывания.
Цель книги - научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения.
Книга предназначена для школьников старших классов, учителей математики и руководителей математических кружков, а также для всех любителей математических задач.

Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012


Примеры.
Три купчихи - Олимпиада, Сосипатра и Поликсена - пили чай. Если бы Олимпиада выпила на 5 чашек больше, то она выпила бы столько, сколько две другие вместе. Если бы Сосипатра выпила на 9 чашек больше, то она выпила бы столько, сколько две другие вместе. Определите, сколько каждая выпила чашек и у кого какое отчество, если известно, что Уваровна пила чай вприкуску, количество чашек чая, выпитых Титовной, кратно трем, а Карповна выпила 11 чашек.

Дама сдавала в багаж: диван, чемодан, саквояж, картину, корзину, картонку и маленькую собачонку. Диван весил столько же, сколько чемодан и саквояж вместе, и столько же, сколько картина и картонка вместе. Картина, корзина и картонка весили поровну, причем каждая из них - больше, чем собачонка. Когда выгружали багаж, дама заявила, что собака не той породы. При проверке оказалось, что собака перевешивает диван, если к ней на весы добавить саквояж или чемодан. Докажите, что претензия дамы была справедлива.

ОГЛАВЛЕНИЕ.
Предисловие ко второму изданию.
Предисловие к третьему изданию.
§1. Задачи для первого знакомства.
§2. Целые числа и многочлены.
§3. Построения на плоскости и в пространстве.
§4. Неравенства, экстремумы, оценки.
§5. Необычные примеры и конструкции.
§6. Последовательности и итерации.
Указания к задачам для самостоятельного решения.
Тематический указатель.
Список литературы.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-19 01:21:28