Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986.

   Мартингалы и семимартингалы стали одним из основных предметов исследования в теории случайных процессов (включая марковские процессы, стохастические дифференциальные уравнения, нелинейную фильтрацию случайных процессов, абсолютную непрерывность мер в бесконечномерных пространствах).
Излагаются общая теория мартингалов и семимартингалов и ряд ее приложений.
Для специалистов в области теории вероятностей, теории случайных процессов, а также в тех разделах естествознания и техники, где используются вероятностные методы.

Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986


Функциональная центральная предельная теорема (принцип инвариантности).
В главе 5 на основе метода стохастических экспонент изучались условия слабой сходимости конечномерных распределений семимартингалов к распределениям процессов с условно независимыми приращениями. Были установлены достаточные условия такой сходимости для предельных процессов, являющихся квазинепрерывными слева семимартингалами, точечными процессами, гауссовскими мартингалами. С помощью этих результатов и результатов об относительной компактности семейств распределений вероятностей семимартингалов (гл. 6) в настоящей главе исследуются условия слабой сходимости распределений семимартингалов к распределениям процессов (указанных типов) с условно независимыми приращениями.

ОГЛАВЛЕНИЕ.
Предисловие.
ЧАСТЬ I.
Глава 1. Основные понятия и сводка результатов «общей теории случайных процессов».
§1. Стохастический базис. Случайные моменты, множества, процессы.
§2. Опциональные и предсказуемые G-алгебры случайных множеств.
§3. Предсказуемые и вполне недостижимые случайные моменты. Классификация марковских моментов. Теоремы о сечениях.
§4. Мартингалы и локальные м ар ти н г алы.
§5. Квадратично интегрируемые мартингалы.
§6. Возрастающие процессы. Компенсаторы (дуально предсказуемые проекции). Разложение Дуба — Мейера.
§7. Структура локальных мартингалов.
§8. Квадратическая характеристика и квадратическая вариация.
§9. Неравенства для локальных мартингалов.
Глава 2. Семимартингалы. I. Стохастический интеграл.
§1. Семимартингалы и квазимартингалы.
§2. Стохастический интеграл по локальному мартингалу и семимартингалу. Конструкция и свойства.
§3. Формула Ито. I.
§4. Уравнение Долеан. Стохастическая экспонента.
§5. Мультипликативное разложение положительных семимартннгалов.
§6. Множества сходимости и усиленный закон больших чисел для специальных семимартингалов.
Глава 3. Случайные меры и их компенсаторы.
§1. Опциональные и предсказуемые случайные меры.
§2. Компенсаторы случайных мер. Условное математическое ожидание относительно σ-алгебры.
§3. Целочисленные случайные меры.
§4. Мультивариантный точечный процесс.
§5. Стохастический интеграл по мартингальной мере μ — v.
§6. Формула Ито. II.
Глава 4. Семимартингалы. II. Каноническое представление.
§1. Каноническое представление. Триплет предсказуемых характеристик семимартингала.
§2. Стохастическая экспонента, построенная по триплету семимартингала.
§3. Мартингальная характеризация семимартингалов с помощью стохастических экспонент.
§4. Характеризация семимартингалов с условно независимыми приращениями.
§5. Семимартингалы и замена вероятностной меры. Преобразование триплетов.
§6. Семимартингалы и редукция потока σ-алгебр.
§7. Семимартингалы и случайная замена времени.
§8. Семимартингалы и интегральное представление мартингалов.
§9. Гауссовские мартингалы и семимартингалы.
§10. Фильтрация специальных семимартингалов.
ЧАСТЬ II.
Глава 5. Слабая сходимость конечномерных распределений семнмартингалов к распределениям процессов с условно независимыми приращениями.
§1. Метод стохастических экспонент. I. Сходимость условных характеристических функций.
§2. Метод стохастических экспонент. II. Слабая сходимость конечномерных распределений.
§3. Слабая сходимость конечномерных распределений точечных процессов и семимартингалов к распределениям точечных процессов.
§4. Слабая сходимость конечномерных распределений семимартингалов к распределению квазинепрерывного слева семимартингала с условно независимыми приращениями.
§5. Центральная предельная теорема. I. «Классический» вариант.
§6. Центральная предельная теорема. II. «Неклассический» вариант.
§7. Оценка скорости сходимости одномерных распределений в центральной предельной теореме.
§8. Мартингальный метод доказательства центральной предельной теоремы для стационарных в узком смысле последовательностей. Связь с условиями перемешивания.
Глава 6. Пространство D. Относительная компактность распределений вероятностей семимартингалов.
§1. Пространство D. Топология Скорохода.
§2. Непрерывные функции на R+XD.
§3. Достаточные условия относительной компактности семейства распределений адаптированных процессов.
§4. Относительная компактность распределений вероятностей семимартингалов.
§5. Необходимые условия слабой сходимости распределений вероятностей семимартингалов.
Глава 7. Слабая сходимость распределений семимартингалов к распределениям процессов с условно независимыми приращениями.
§1. Функциональная центральная предельная теорема (принцип инвариантности).
§2. Слабая сходимость распределений семимартингалов к распределениям точечных процессов.
§3. Слабая сходимость распределений семимартингалов к распределению квазинепрерывного слева семимартингала с условно независимыми приращениями.
Глава 8. Слабая сходимость распределений семимартингалов к распределению семимартингала.
§1. Сходимость стохастических экспонент и слабая сходимость распределений семимартингалов.
§2. Слабая сходимость к распределению квазинепрерывного слева семимартингала.
§3. Диффузионная аппроксимация.
§4. Слабая сходимость к распределению точечного процесса с непрерывным компенсатором.
§5. Слабая сходимость инвариантных мер.
§6. Семимартингалы со стационарными в узком смысле приращениями. Одно обобщение принципа инвариантности Донскера.
Историко-библиографическая справка.
Список литературы.
Предметный указатель.
Указатель обозначений.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория мартингалов, Липцер Р.Ш., Ширяев А.Н., 1986 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-26 08:29:08