Как получать надежные решения систем уравнений, Петров Ю.П., 2012.
Необходимость вычислять решения систем алгебраических уравнений встречается во многих задачах техники и физики, и без точных оценок возможной погрешности решения не надежны. В книге изложены методы и алгоритмы, впервые позволяющие дать точную оценку погрешности каждой из составляющей вектора решений системы линейных алгебраических уравнений, тогда как ранее были известны только приближенные оценки.

Предисловие.
В данном учебном пособии приведены — в наиболее простой и доступной форме— результаты исследований автора в области надежности расчета объектов физики и техники, описываемых системами линейных алгебраических уравнений1. Проведенное исследование показало, что традиционные и повсеместно используемые методы расчета не всегда и не для всех объектов дают надежные результаты. Результаты расчета могут не соответствовать реальному поведению рассчитываемых объектов, и это служит причиной многих аварий и даже катастроф.
Оглавление.
Предисловие.
§ 1. Примеры расчета.
§ 2. Исследование зависимости решений от параметров.
§ 3. Проблемы "Математики-2".
§ 4. Вычисление решений через обратные матрицы;"числа обусловленности" решений.
§ 5. Некорректные и плохо обусловленные задачи в "Математике-1" и в "Математике-2".
§ 6. Достоинства и недостатки оценки погрешности по "числу обусловленности".
§ 7. Новые результаты в проблеме оценок по "числам обусловленности".
1. Зависимость "числа обусловленности" от эквивалентных преобразований уравнений.
2. Ложная зависимость "числа обусловленности" от масштабов измерения коэффициентов уравнений.
3. Ошибочные суждения о влиянии параметров системы на обусловленность решений.
§ 8. Вычисление погрешности решений при вариациях правой части.
§ 9. Выделение "очень плохо обусловленных систем" с использованием "модульных определителей".
§ 10. Оценка погрешности решений через "модульные определители".
§ 11. Недостатки и достоинства методики оценки погрешностей решений через "модульные определители".
§ 12. Возможности улучшения оценок нормы погрешности по "числу обусловленности".
§ 13. Точная оценка изменения решений при вариациях коэффициентов системы уравнений.
§ 14. Результаты численного эксперимента.
§ 15. Рассмотрение расчета одной из конструкций.
§ 16. Обоснование построения "таблиц знаков" и точной оценки вариаций определителей.
§ 17. Рассмотрение особых частных случаев.
§ 18. Вычисление точных значений вариаций каждой из составляющих вектора решений.
§ 19. Общий алгоритм точной оценки погрешностей каждой из составляющих вектора решений.
§ 20. Использование оценок вариаций при вычислении решений обыкновенных дифференциальных уравнений.
§ 21. Применения к решению интегральных уравнений.
§ 22. Применения к решению дифференциальных уравнений в частных производных.
§ 23. Примеры аварий и катастроф. Анализ их причин.
§ 24. Краткий обзор методов и результатов "Математики-2".
§ 25. Дополнительные пояснения и примеры.
§ 26. Заключение.
Литература.
Купить .
Теги: Петров :: 2012 :: система уравнений :: решение