Что такое математика, Курант Р., Роббинс Г., 2015

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Что такое математика, Курант Р., Роббинс Г., 2015.
 
  Книга написана крупным математиком Рихардом Курантом в соавторстве с Гербертом Роббинсом. Она призвана сократить разрыв между математикой, которая преподается в школе, и наиболее живыми и важными для естествознания и техники разделами современной математической науки. Начиная с элементарных понятий, читатель движется к важным областям современной науки. Книга написана доступным языком и является классикой популярного жанра в математике.
Книга предназначена для школьников, студентов, преподавателей, а также для всех интересующихся развитием математики и ее структурой.

Что такое математика, Курант Р., Роббинс Г., 2015


Принцип математической индукции.
Последовательность натуральных чисел 1, 2, 3, 4, ... не имеет конца: действительно, как только достигается некоторое число n, вслед за ним сейчас же можно написать ближайшее к нему натуральное число n + 1. Желая как-нибудь назвать эти свойства последовательности натуральных чисел, мы говорим, что этих чисел существует бесконечное множество. Последовательность натуральных чисел представляет простейший и самый естественный пример бесконечного (в математическом смысле), играющего господствующую роль в современной математике. Не раз в этой книге нам придется иметь дело с совокупностями, содержащими бесконечное множество объектов; такова, например, совокупность всех точек на прямой линии или совокупность всех треугольников на плоскости. Но бесконечная последовательность натуральных чисел безусловно представляет простейший пример бесконечной совокупности.

Последовательный, шаг за шагом, переход от n к n + 1, порождающий бесконечную последовательность натуральных чисел, вместе с тем лежит в основе одного из важнейших и типичных для математики рассуждений, именно принципа математической индукции. «Эмпирическая индукция», применяемая в естественных науках, исходит из частного ряда наблюдений некоторого явления и приходит к констатации общего закона, которому подчиняется явление в его различных формах. Степень уверенности, с которой закон таким образом устанавливается, зависит от числа отдельных наблюдений и выводимых из них заключений. Часто подобного рода индуктивные рассуждения бывают вполне убедительными; утверждение, что солнце взойдет завтра с востока, столь несомненно, насколько это вообще возможно; и все же характер констатации в данном случае совсем иной, чем в случае теоремы, доказываемой на основе строгого логического, т. е. математического, рассуждения.

Купить .
Дата публикации:

Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2020-08-06 18:15:43