Курс дифференциальной геометрии, Шарипов Р.А., 1996

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Курс дифференциальной геометрии, Шарипов Р.А., 1996.

  Электронная версия книги свободно распространяются в сети Интернет, она бесплатна для персонального использования и учебных целей. Любое коммерческое использование без письменного согласия автора запрещено.
Книга представляет собой учебное пособие по основному курсу дифференциальной геометрии и предназначена для первоначального знакомства с этой дисциплиной.

Курс дифференциальной геометрии, Шарипов Р.А., 1996

Свойства псевдотензорных полей.
Псевдотензоры и псевдотензорные поля являются близко родственными объектами для тензоров и тензорных полей. В этом параграфе мы повторим большинство результатов предыдущих параграфов применительно к псевдотензорам. Доказательства этих результатов практически не отличаются от соответствующих доказательств в чисто тензорном случае. Поэтому их мы не приводим.

Пусть А и В — два псевдотензорных поля типа (r, s). Тогда формула (3.1) определяет третье поле С = А + В, которое также оказывается псевдотензорным полем типа (r, s). Важно отметить, что покомпонентное сложение тензорного поля А с псевдотензорным полем В по формуле (3.1) не является корректной операцией. Сумму А 4=В таких нолей можно понимать только как формальную сумму типа (3.5).

Формула (2.2) для тензорного умножения оказывается более универсальной. Она определяет произведение ноля А типа (r, s) с нолем В типа (т,п). При этом каждое из нолей может быть как тензорным, так и псевдотензорным полем. У тензорного умножения имеются следующие свойства:
(1) тензорное произведение двух тензорных полей есть тензорное поле;
(2) тензорное произведение двух псевдотензорных полей есть тензорное поле;
(3) тензорное произведение тензорного и псевдотензорного полей есть псевдотензорное поле.

ОГЛАВЛЕНИЕ
ПРЕДИСЛОВИЕ
ГЛАВА I. КРИВЫЕ В ТРЕХМЕРНОМ ЕВКЛИДОВОМ ТОЧЕЧНОМ ПРОСТРАНСТВЕ
§1. Кривые. Способы задания кривых. Регулярные и особые точки кривой
§2. Интеграл длины и выбор натурального параметра на кривой
§3. Репер Френе. Динамика репера Френе. Кривизна и кручение пространственной кривой
§4. Центр кривизны и радиус кривизны. Эволюта и эвольвента кривой
§5. Кривые как траектории материальных точек в механике
ГЛАВА II. ЭЛЕМЕНТЫ ВЕКТОРНОГО И ТЕНЗОРНОГО АНАЛИЗА
§1. Векторные и тензорные поля в пространстве
§2. Тензорное произведение и свертка
§3. Алгебра тензорных полей
§4. Симметрирование и альтернирование
§5. Дифференцирование тензорных полей
§6. Метрический тензор и псевдотензор объема
§7. Свойства псевдотензоров
§8. Замечание об ориентации
§9. Поднятие и опускание индексов
§10. Градиент, дивергенция и ротор. Некоторые тождества векторного анализа
§11. Потенциальные и вихревые векторные поля
ГЛАВА III. КРИВОЛИНЕЙНЫЕ КООРДИНАТЫ.
§1. Некоторые примеры криволинейных систем координат.
§2. Подвижный репер криволинейной системы координат.
§3. Замена криволинейных координат
§4. Векторные и тензорные поля в криволинейных координатах
§5. Дифференцирование тензорных нолей в криволинейных координатах
§6. Преобразование компонент связности при замене системы координат
§7. Согласованность метрики и связности. Еще одна формула для символов Кристоффеля
§8. Параллельный перенос. Уравнение прямой в криволинейных координатах
§9. Некоторые вычисления в полярных, цилиндрических и сферических координатах
ГЛАВА IV. ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ
§1. Параметрическое задание поверхностей. Криволинейные координаты па поверхности
§2. Замена криволинейных координат на поверхности
§3. Метрический тензор и тензор площади
§4. Подвижный репер поверхности. Деривационные формулы Вайнгартена
§5. Символы Кристоффеля и вторая квадратичная форма
§6. Ковариантное дифференцирование внутренних тензорных полей на поверхности
§7. Согласованность метрики и связности на поверхностях
§8. Тензор кривизны
§9. Уравнения Гаусса и Петереона-Кодацци
ГЛАВА V. КРИВЫЕ НА ПОВЕРХНОСТЯХ
§1. Параметрическое уравнение кривой на поверхности
§2. Геодезическая и нормальная кривизна кривой
§3. Экстремальное свойство геодезических линий
§4. Внутренний параллельный перенос на поверхностях
§5. Интегрирование на поверхностях. Формула Грина
§6. Теорема Гаусса-Бонне
СПИСОК ЛИТЕРАТУРЫ.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Курс дифференциальной геометрии, Шарипов Р.А., 1996 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу Курс дифференциальной геометрии, Шарипов Р.А., 1996 - pdf - depositfiles.

Скачать книгу Курс дифференциальной геометрии, Шарипов Р.А., 1996 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-27 16:28:04