Springer Textbooks in Earth Sciences, Trauth M.H., 2024

Подробнее о кнопках "Купить"

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Springer Textbooks in Earth Sciences, Trauth M.H., 2024.

   The book Python Recipes for Earth Sciences is designed to help undergraduate and postgraduate students, doctoral students, post-doctoral researchers, and professionals alike in finding quick solutions to common data analysis problems in the earth sciences. It provides a minimal amount of theoretical background and demonstrates the application of all described methods via examples. The book is based on the popular MATLAB Recipes for Earth Sciences book that I wrote many years ago, which is now available in its 6th edition (Springer 2024).

Springer Textbooks in Earth Sciences, Trauth M.H., 2024


Data Storage and Handling.
This section deals with how to store, import, and export data with Python. Many of the data formats typically used in the earth sciences must be converted before being analyzed with Python. Alternatively, the software provides several import routines for reading many binary data formats in the earth sciences, such as those used to store digital elevation models and satellite data. Newer functions in Python are capable of importing mixed data types (e.g., text, integers, and floating point numbers) from a single file into the workspace.

A computer generally stores data as binary digits, or bits, for short. A bit is analogous to a two-way switch with two states: on = I. and off=0. These bits are joined together to form larger groups, such as bytes (which consist of 8 bits) in order to store more complex types of data. These groups of bits are then used to encode data, such as numbers or characters. Unfortunately, different computer systems and software use different schemes for encoding data. Exchanging binary data between different computer platforms and software can therefore be difficult.

Contents.
1 Data Analysis in the Earth Sciences. 
1.1 Introduction. 
1.2 Data Collection. 
1.3 Data Types. 
1.4 Methods of Data Analysis. 
References. 
2 Introduction to Python. 
2.1 Introduction. 
2.2 Getting Started.
2.3 Python Syntax. 
2.4 Array Manipulation. 
2.5 Data Types in Python. 
2.6 Data Storage and Handling. 
2.7 Control Flow. 
2.8 Scripts and Functions.
2.9 Basic Visualization Tools.
References. 
3 Univariate Statistics. 
3.1 Introduction. 
3.2 Empirical Distributions.
3.3 Examples of Empirical Distributions.
3.4 Theoretical Distributions.
3.5 Examples of Theoretical Distributions. 
3.6 Hypothesis Testing. 
3.7 The t-Test. 
3.8 The F-Test.
3.9 The χ2-Test. 
3.10 The Kolmogorov–Smirnov Test. 
3.11 The Mann–Whitney Test. 
3.12 The Ansari–Bradley Test. 
3.13 Distribution Fitting.
3.14 Error Analysis. 
References. 
4 Bivariate Statistics. 
4.1 Introduction. 
4.2 Correlation Coefficients. 
4.3 Classical Linear Regression Analysis.
4.4 Analyzing Residuals. 
4.5 Bootstrap Estimates of Regression Coefficients.
4.6 Jackknife Estimates of Regression Coefficients.
4.7 Cross-Validation. 
4.8 Reduced Major Axis Regression.
4.9 Curvilinear Regression. 
References. 
5 Time Series Analysis. 
5.1 Introduction. 
5.2 Generating Signals. 
5.3 Fourier Transforms FT, DFT and FFT. 
5.4 Schuster’s Periodogram Method.
5.5 The Blackman–Tukey Method and Welch’s Method. 
5.6 Interpolating and Analyzing Unevenly Spaced Data. 
5.7 The Spectrogram (Sonogram, Sonograph) Method. 
5.8 Thomson’s Multitaper Method. 
5.9 The Lomb–Scargle Power Spectrum.
5.10 The Wavelet Power Spectrum. 
5.11 Nonlinear Time Series Analysis (by N. Marwan). 
5.12 Detecting Abrupt Transitions in Time Series. 
5.13 Describing Gradual Transitions in Time Series. 
References. 
6 Signal Processing.
6.1 Introduction. 
6.2 Generating Signals. 
6.3 Linear Time Invariant Systems. 
6.4 Convolution, Deconvolution, and Filtering.
6.5 Comparing Functions for Filtering Data Series.
6.6 Recursive and Nonrecursive Filters. 
6.7 Impulse Response.
6.8 Frequency Response.
6.9 Filter Design.
6.10 Adaptive Filtering. 
References. 
7 Spatial Data. 
7.1 Introduction. 
7.2 The Global Geography Database GSHHG. 
7.3 The 15 Arc-Second Global Relief Model ETOPO 2022. 
7.4 The 30 Arc-Second Elevation Model GTOPO30.
7.5 The Shuttle Radar Topography Mission SRTM. 
7.6 Gridding and Contouring. 
7.7 Comparison of Methods and Potential Artifacts. 
7.8 Statistics of Point Distributions. 
7.9 Analysis of Digital Elevation Models (by R. Gebbers).
7.10 Geostatistics and Kriging (by R. Gebbers). 
References.
8 Image Processing.
8.1 Introduction.
8.2 Data Storage.
8.3 Importing, Processing, and Exporting Images. 
8.4 Importing, Processing, and Exporting Landsat Images. 
8.5 Importing and Georeferencing Terra ASTER Images. 
8.6 Processing and Exporting EO-1 Hyperion Images.
8.7 The Normalized Difference Vegetation Index NDVI. 
8.8 Image Enhancement, Correction, and Rectification. 
8.9 Removing Periodic Noise from Images. 
8.10 Grain Size Analysis from Microscopic Images.
8.11 Quantifying Charcoal in Microscopic Images. 
8.12 Shape-Based Object Detection in Images. 
8.13 Digitizing from the Screen. 
References.
9 Multivariate Statistics. 
9.1 Introduction.
9.2 Principal Component Analysis.
9.3 Independent Component Analysis (by N. Marwan). 
9.4 Discriminant Analysis. 
9.5 Cluster Analysis.
9.6 Multiple Linear Regression.
9.7 Aitchison’s Log-Ratio Transformation. 
References.
10 Directional Data.
10.1 Introduction. 
10.2 The Graphical Representation of Circular Data.
10.3 Empirical Distributions of Circular Data. 
10.4 Theoretical Distributions of Circular Data. 
10.5 Testing for the Randomness of Circular Data.
10.6 Testing for the Significance of a Mean Direction.
10.7 Testing for the Difference Between Two Sets of Directions. 
10.8 The Graphical Representation of Spherical Data. 
10.9 The Statistics of Spherical Data. 
References.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Springer Textbooks in Earth Sciences, Trauth M.H., 2024 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-07-19 11:09:01