Высшая математика, Краткий курс, Михеев В.И., Павлюченко Ю.В., 2008.
Пособие по высшей математике, содержащее все основные разделы курса, предназначено в первую очередь для студентов тех направлений и специальностей, для которых предусмотрен укороченный (односеместровый) курс высшей математики. В конце каждого раздела имеются вопросы и задачи для самопроверки, а также домашние и аудиторные задания. В конце пособия приведено примерное содержание заключительной практической или экзаменационной работы, рассчитанной на студента, изучившего все представленные в пособии разделы математики.
Подготовлено на кафедре высшей математики Российского университета дружбы народов.
Допущено Министерством образования и науки Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по нематематическим направлениям подготовки и специальностям.
Геометрия: некоторые классические соотношения.
Аналогично тому, как в алгебре первоначальным понятием является число, так в геометрии первичными понятиями являются точка, линия (в частности, прямая), поверхность (в частности, плоскость).
Используя эти первичные понятия, математики с давних пор ставили и решали многочисленные геометрические задачи, отражающие наше представление об окружающем пространстве. В древности дальше других в этом продвинулись древнегреческие математики — имена Пифагора, Евклида, Архимеда на слуху у каждого человека, знакомящегося с началами школьной геометрии. Их исследования были чрезвычайно глубоки. Они представляются еще более поразительными, если принять во внимание, что в те времена еще не было алгебраического аппарата, которым сегодня (в меру своих успехов!) владеет каждый школьник.
СОДЕРЖАНИЕ.
Предисловие к первому изданию.
Предисловие ко второму изданию.
Введение.
Глава 1. Алгебра и геометрия: старейшие ветви математики.
§1. Алгебра: числовые множества.
§2. Геометрия: некоторые классические соотношения.
§3. Действительная числовая ось и система координат на плоскости — синтез алгебры и геометрии.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №1.
Глава 2. Алгебра: системы линейных уравнений.
§1. Линейные уравнения.
§2. Системы линейных уравнений. Метод Гаусса.
§3. Определители. Правило Крамера.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №2.
Глава 3. Аналитическая геометрия: прямая линия и кривые второго порядка.
§1. Простейшие задачи.
§2. Различные виды уравнений прямой.
§3. Кривые 2-го порядка.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №3.
Глава 4. Числовые последовательности. Предел числовой последовательности.
§1. Числовые последовательности: определения и примеры.
§2. Предел числовой последовательности.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №4.
Приложение.
Глава 5. Функции: основные определения и понятия, графики функций. Обзор основных элементарных функций.
§1. Первоначальные сведения о функциях.
§2. Основные элементарные функции.
§3. Класс элементарных функций.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №5.
Глава 6. Функции: предел и непрерывность.
§1. Теория пределов.
§2. Непрерывные функции.
Вопросы для самопроверка.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы №6.
Глава 7. Дифференцирование функций. Исследование функций с помощью производных.
§1. Основные определения и понятия.
§2. Техника дифференцирования.
§3. Основные теоремы дифференциального исчисления.
§4. Исследование функций с помощью производных.
§5. Пример полного исследования функции.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы.№7.
Глава 8. Интегрирование функций.
§1. Неопределенный интеграл: основные определения и понятия.
§2. Определенный интеграл.
Вопросы для самопроверки.
Задания для аудиторной и домашней работы.
Задания для индивидуальной домашней работы.№8.
Приложение «Догонит ли Ахиллес Черепаху?».
Примерный вариант итоговой зачетной или экзаменационной работы.
Литература.
Дополнительная литература.
Купить .
Купить .
Теги: учебник по высшей математике :: высшая математика :: Михеев :: Павлюченко
Смотрите также учебники, книги и учебные материалы:
- Многочлены, Табачников С.Л., 2000
- Математика по методу Монтессори в детском саду и школе, Сорокова М.Г., 1997
- Математика в проблемных ситуациях для маленьких детей, Смоленцева А.А., Суворова О.В., 1999
- Логические и математические исчисления, Шиханович Ю.А., 2011
- Учись применять математику, Пухначев Ю.В., Попов Ю.П., 1977
- Основы высшей математики для инженеров, учебное пособие, Липовцев Ю.В., Третьякова О.Н., 2009
- Элементарное введение в высшую математику, учебное пособие, Колесов В.В., Романов М.Н., 2013
- Элементы численного анализа и математической обработки результатов опыта, Гутер Р.С., Овчинский Б.В., 1970