Методы оптимизации в примерах и задачах, Пантелеев А.В., Летова Т.А., 2015.
Рассмотрены аналитические методы решения задач поиска экстремума функций многих переменных на основе необходимых и достаточных условий. Изложены численные методы нулевого, первого и второго порядков решения задач безусловной минимизации, а также численные методы поиска условного экстремума. Описаны алгоритмы решения задач линейного программирования, целочисленного программирования, транспортных задач. Приведены методы решения задач поиска безусловного и условного экстремума функционалов на основе метода вариаций.
В каждой главе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения с ответами. Учебное пособие поддерживает компетентностную модель обучения: содержит модели требуемых знаний и умений решать типовые задачи предмета.
Для студентов высших учебных заведений, получающих образование по направлению (специальности) «Прикладная математика», а также по направлениям (специальностям) естественных наук, техники и технологий, информатики и экономики на квалификацию специалиста, степени бакалавра и магистра.
АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ.
Шаг 1. Записать необходимые условия экстремума первого порядка в форме (2.3) и найти стационарные точки х* в результате решения системы п в общем случае нелинейных алгебраических уравнений с п неизвестными. Для численного решения системы могут использоваться методы простой итерации, Зейделя, Ньютона.
Шаг 2. В найденных стационарных точках х* проверить выполнение достаточных, а если они не выполняются, то необходимых условий второго порядка с помощью одного из двух способов (см. табл. 2.1).
Шаг 3. Вычислить значения f(x*) в точках экстремума.
Описанный алгоритм отображен на рисунке 2.1, где показана последовательность действий в случаях выполнения и невыполнения соответствующих условий экстремума при применении первого способа.
ОГЛАВЛЕНИЕ.
Глава 1 Условия экстремума функций.
§1. Общая постановка задачи оптимизации и основные положения.
§2. Необходимые и достаточные условия безусловного экстремума.
§3. Необходимые и достаточные условия условного экстремума.
Глава 2 Численные методы поиска безусловного экстремума.
§4. Принципы построения численных методов поиска безусловного экстремума.
§5. Методы нулевого порядка.
§6. Методы первого порядка.
§7. Методы второго порядка.
Глава 3 Численные методы поиска условного экстремума.
§8. Принципы построения численных методов поиска условного экстремума.
§9. Методы последовательной безусловной минимизации.
§10. Методы возможных направлений.
Глава 4 Задачи линейного программирования.
§11. Методы решения задач линейного программирования.
§12. Методы решения задач линейного целочисленного программирования.
§13. Методы решения транспортных задач.
Глава 5 Задачи вариационного исчисления.
§14. Общая постановка задачи и основные положения.
§15. Вариационные задачи поиска безусловного экстремума.
§16. Вариационные задачи поиска условного экстремума.
Литература.
Купить .
Теги: учебник по математике :: математика :: Пантелеев :: Летова
Смотрите также учебники, книги и учебные материалы:
- Решебник к сборнику задач по курсу математического анализа Бермана, 2011
- Математика, 2 класс, Моро М.И., Волкова С.И., Степанова С.В., 2016
- Математика, 1 класс, Моро М.И., Волкова С.И., Степанова С.В., 2016
- Метрические пространства, Сибиряков Г.В., Мартынов Ю.А., 2016
- Методы оптимальных решений, Шелехова Л.В., 2016
- Курс обыкновенных дифференциальных уравнений, Бибиков Ю.Н., 2011
- Математика в 1 классе, Муравьева Г.Л., Урбан М.А., Гадзаова С.В., Копылова С.В., 2019
- Вычислительные методы, Амосов А.А., Дубинский Ю.А., Копченова Н.В., 2014