Задачи по планиметрии, Прасолов В.В., 2006.
Книга может использоваться в качестве задачника по геометрии для 7—11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения. С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии. Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в вузы. Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Подобные треугольники.
В треугольник АВС вписан квадрат РQRS так, что вершины Р и Q лежат на сторонах АВ и АС, а вершины R и S — на стороне ВС. Выразите длину стороны квадрата через сторону а и высоту hа.
Основания АD и ВС трапеции АВСD равны а и b (а > b).
а) Найдите длину отрезка, высекаемого диагоналями на средней линии.
б) Найдите длину отрезка МN, концы которого делят стороны АВ и СD в отношении АМ : МВ = DN : NС = р: q.
Докажите, что середины сторон произвольного четырёхугольника— вершины параллелограмма. Для каких четырёхугольников этот параллелограмм является прямоугольником, для каких — ромбом, для каких — квадратом?
а) Точки А1 и В1 делят стороны ВС и АС треугольника АВС в отношениях ВА1 : А1С = 1: р и АВ1 : В1С = 1 : q. В каком отношении отрезок АА1 делится отрезком ВВ1?
б) На сторонах ВС и АС треугольника АВС взяты точки А1 и В1. Отрезки АА1 и ВВ1 пересекаются в точке D. Пусть а1, b1, с и d—расстояния от точек A1, В1, С и D до прямой АВ.
Купить .
Теги: задачник по геометрии :: геометрия :: Прасолов