Задачи по стереометрии, Прасолов В.В., 2016

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Задачи по стереометрии, Прасолов В.В., 2016.

 В книгу включено около 800 задач по стереометрии, снабжённых подробными решениями. Большинство задач по своей тематике относится к школьной программе. Уровень их трудности в основном несколько выше обычных школьных задач, и есть также некоторое количество весьма трудных задач, предназначенных для учащихся математических классов. Задачи разбиты на циклы, связанные общей идеей решения. Внутри каждого цикла задачи расположены в порядке возрастания трудности. Такое разбиение поможет читателю ориентироваться в большом наборе задач и даст ему возможность разобраться непосредственно в заинтересовавшей его теме, не читая подряд всю книгу.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по стереометрии, Прасолов В.В., 2016


Примеры.
Докажите, что для любого фиксированного многоугольника М в пространстве можно выбрать вектор v так, что площадь проекции многоугольника М на любую плоскость будет равна длине проекции вектора v на прямую, перпендикулярную этой плоскости.

Три многоугольника расположены в пространстве так, что их плоскости пересекаются в одной точке. Докажите, что существует плоскость, площади проекций на которую всех трёх многоугольников равны.

Купить .
Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-21 16:04:29