Геометрия, 7-9 класс, Погорелов А.В., 2014

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Геометрия, 7-9 класс, Погорелов А.В., 2014.

   Содержание учебника позволяет достичь планируемых результатов обучения, предусмотренных ФГОС основного общего образования. В учебнике выделены задачи повышенной трудности, добавлены новые пункты: «Замечательные точки в треугольнике»; «Геометрические преобразования на практике»; «Измерение углов, связанных с окружностью», и др., что усиливает практическую направленность курса геометрии. Большое количество фотографий реальных объектов позволяет увидеть геометрические фигуры в окружающем мире.

Геометрия, 7-9 класс, Погорелов А.В., 2014


Геометрические фигуры.
Геометрия — это наука о свойствах геометрических фигур. Слово «геометрия» греческое, в переводе на русский язык означает «землемерие». Такое название связано с применением геометрии для измерений на местности.

Примеры геометрических фигур: треугольник, квадрат, окружность (рис. 1).

Геометрические фигуры бывают весьма разнообразны. Часть любой геометрической фигуры является геометрической фигурой. Объединение нескольких геометрических фигур есть снова геометрическая фигура. На рисунке 2 фигура вверху состоит из треугольника и трёх квадратов, а фигура внизу состоит из окружности и частей окружности. Всякую геометрическую фигуру мы представляем себе составленной из точек.

Геометрия широко применяется на практике. Её надо знать и рабочему, и инженеру, и архитектору, и художнику. Одним словом, геометрию надо знать всем.

Геометрия, которая изучается в школе, называется евклидовой по имени Евклида, создавшего руководство по математике под названием «Начала». В течение длительного времени геометрию изучали по этой книге.

Содержание
7 КЛАСС
§ 1. Основные свойства простейших геометрических фигур
1. Геометрические фигуры 4. 2. Точка и прямая 5. 3. Отрезок 6. 4. Измерение отрезков 6. 5. Полуплоскости 7. 6. Полупрямая 8. 7. Угол 9. 8. Откладывание отрезков и углов 11. 9. Треугольник 12. 10. Существование треугольника, равного данному 13. 11. Параллельные прямые 13. 12. Теоремы и доказательства 14. 13. Аксиомы 15. Контрольные вопросы 16. Задачи 17.
§ 2. Смежные и вертикальные углы
14. Смежные углы 22. 15. Вертикальные углы 23. 16. Перпендикулярные прямые 24. 17. Доказательство от противного 25. 18. Биссектриса угла 26. 19. Что надо делать, чтобы успевать по геометрии 26. Контрольные вопросы 27. Задачи 27.
§ 3. Признаки равенства треугольников
20. Первый признак равенства треугольников по двум сторонам и углу между ними 29. 21. Использование аксиом при доказательстве теорем 30. 22. Второй признак равенства треугольников по стороне и прилежащим к ней углам 31. 23. Равнобедренный треугольник 32. 24. Обратная теорема 33. 25. Высота, биссектриса и медиана треугольника 34. 26. Свойство медианы равнобедренного треугольника 34. 27. Третий признак равенства треугольников по трём сторонам 35. 28. Как готовиться по учебнику самостоятельно 36. Контрольные вопросы 38. Задачи 38.
§ 4. Сумма углов треугольника
29. Параллельность прямых 43. 30. Углы, образованные при пересечении двух прямых секущей 43. 31. Признак параллельности прямых 44. 32. Свойство углов, образованных при пересечении параллельных прямых секущей 46. 33. Сумма углов треугольника 47. 34. Внешние углы треугольника 47. 35. Прямоугольный треугольник 48. 36. Существование и единственность перпендикуляра к прямой 50. 37. Из истории возникновения геометрии 51. Контрольные вопросы 52. Задачи 53.
§ 5. Геометрические построения
38. Окружность 57. 39. Окружность, описанная около треугольника 58. 40. Касательная к окружности 59. 41. Окружность, вписанная в треугольник 60. 42. Что такое задачи на построение 61. 43. Построение треугольника с данными сторонами 61. 44. Построение угла, равного данному 62. 45. Построение биссектрисы угла 62. 46. Деление отрезка пополам 62. 47. Построение перпендикулярной прямой 63. 48. Геометрическое место точек 64. 49. Метод геометрических мест 65. Контрольные вопросы 66. Задачи 66.
8 КЛАСС
§ 6. Четырёхугольники
50. Определение четырёхугольника 72. 51. Параллелограмм 73. 52. Свойство диагоналей параллелограмма 74. 53. Свойство противолежащих сторон и углов параллелограмма 75. 54. Прямоугольник 76. 55. Ромб 76. 56. Квадрат 77. 57. Теорема Фалеса 78. 58. Средняя линия треугольника 79. 59. Трапеция 80. 60. Пропорциональные отрезки 81. 61. Замечательные точки в треугольнике 83. Контрольные вопросы 85. Задачи 86.
§ 7. Теорема Пифагора
62. Косинус угла 91. 63. Теорема Пифагора 92. 64. Египетский треугольник 93. 65. Перпендикуляр и наклонная 94. 66. Неравенство треугольника 95. 67. Соотношения между сторонами и углами в прямоугольном треугольнике 96. 68. Основные тригонометрические тождества 97. 69. Значения синуса, косинуса, тангенса и котангенса некоторых углов 98. 70. Изменение синуса, косинуса, тангенса и котангенса при возрастании угла 100. Контрольные вопросы 100. Задачи 101.
§ 8. Декартовы координаты на плоскости
71. Определение декартовых координат 107. 72. Координаты середины отрезка 108. 73. Расстояние между точками 109. 74. Уравнение окружности 110. 75. Уравнение прямой 111. 76. Координаты точки пересечения прямых 112. 77. Расположение прямой относительно системы координат 113. 78. Угловой коэффициент в уравнении прямой 114. 79. График линейной функции 115. 80. Пересечение прямой с окружностью 115. 81. Определение синуса, косинуса, тангенса и котангенса для любого угла от 0° до 180° 116. Контрольные вопросы 117. Задачи 118.
§ 9. Движение
82. Преобразование фигур 122. 83. Свойства движения 123. 84. Симметрия относительно точки 124. 85. Симметрия относительно прямой 125. 86. Поворот 127. 87. Параллельный перенос и его свойства 128. 88. Существование и единственность параллельного переноса. Сонаправленность полупрямых 129. 89. Геометрические преобразования на практике 132. 90. Равенство фигур 133. Контрольные вопросы 134. Задачи 135.
§10. Векторы
91. Абсолютная величина и направление вектора 138. 92. Равенство векторов 139. 93. Координаты вектора 140. 94. Сложение векторов 141. 95. Сложение сил 142. 96. Умножение вектора на число 143. 97. Разложение вектора по двум неколлинеарным векторам 144.
98. Скалярное произведение векторов 145. 99. Разложение вектора по координатным осям 147. Контрольные вопросы 148. Задачи 149.
9 КЛАСС
§11. Подобие фигур
100. Преобразование подобия 154. 101. Свойства преобразования подобия 155. 102. Подобие фигур 156. 103. Признак подобия треугольников по двум углам 157. 104. Признак подобия треугольников по двум сторонам и углу между ними 158. 105. Признак подобия треугольников по трём сторонам 159. 106. Подобие прямоугольных треугольников 160. 107. Углы, вписанные в окружность 162. 108. Пропорциональность отрезков хорд и секущих окружности 163. 109. Измерение углов, связанных с окружностью 164. Контрольные вопросы 165. Задачи 166.
§ 12. Решение треугольников
110. Теорема косинусов 172. 111. Теорема синусов 173. 112. Соотношение между углами треугольника и противолежащими сторонами 174. 113. Решение треугольников 175. Контрольные вопросы 177. Задачи 177.
§ 13. Многоугольники
114. Ломаная 179. 115. Выпуклые многоугольники 180. 116. Правильные многоугольники 182. 117. Формулы для радиусов вписанных и описанных окружностей правильных многоугольников 183. 118. Построение некоторых правильных многоугольников 184. 119. Вписанные и описанные четырёхугольники 185. 120. Подобие правильных выпуклых многоугольников 187. 121. Длина окружности 189. 122. Радианная мера угла 190. Контрольные вопросы 191. Задачи 192.
§ 14. Площади фигур
123. Понятие площади 195. 124. Площадь прямоугольника 196. 125. Площадь параллелограмма 197. 126. Площадь треугольника 198. 127. Равновеликие фигуры 199. 128. Площадь трапеции 200. 129. Формулы для радиусов вписанной и описанной окружностей треугольника 201. 130. Площади подобных фигур 202. 131. Площадь круга 202. Контрольные вопросы 205. Задачи 205.
§ 15. Элементы стереометрии
132. Аксиомы стереометрии 210. 133. Параллельность прямых и плоскостей в пространстве 211. 134. Перпендикулярность прямых и плоскостей в пространстве 212. 135. Многогранники 214. Задачи 217. 136. Тела вращения 219. Задачи 221.
Список рекомендуемой литературы 223
Ответы и указания к задачам 224
Предметный указатель 235.

Купить .
Дата публикации:






Теги: :: :: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-01-22 02:57:35