Простейшие примеры математических доказательств, Успенский В.А., 2009.
В брошюре доступным неспециалистам языком рассказывается о некоторых из основополагающих принципов, на которых строится наука математика: чем понятие математического доказательства отличается от понятия доказательства, принятого в других науках и в повседневной жизни, какие простейшие приёмы доказательства используются в математике, как менялось со временем представление о «правильном» доказательстве, что такое аксиоматический метод, в чём разница между истинностью и доказуемостью.
Для очень широкого круга читателей, начиная со школьников старших классов.
МАТЕМАТИКА И ДОКАЗАТЕЛЬСТВА.
Даже незнакомый с математикой человек, взяв в руки книгу по математике, может, как правило, сразу определить, что эта книга действительно по математике, а не по какому-нибудь другому предмету. И дело не только в том, что там обязательно будет много формул: формулы есть и в книгах по физике, по астрономии или по мостостроению. Дело в том, что в любой серьёзной книге по математике непременно присутствуют доказательства. Именно доказуемость математических утверждений, наличие в математических текстах доказательств — вот что нагляднее всего отличает математику от других областей знания.
Первую попытку охватить единым трактатом всю математику предпринял древнегреческий математик Евклид в III веке до нашей эры. В результате появились знаменитые «Начала» Евклида. А вторая попытка состоялась только в XX веке н. э., и принадлежит она французскому математику Никол´я Бурбаки, начавшему в 1939 году издавать многотомный трактат «Начала математики». Вот какой фразой открывает Бурбаки свой трактат: «Со времён греков говорить „математика“ — значит говорить „доказательство“». Таким образом, «математика» и «доказательство» — эти два слова объявляются почти синонимами.
ОГЛАВЛЕНИЕ
Математика и доказательства
О точности и однозначности математических терминов
Доказательства методом перебора
Косвенные доказательства существования. Принцип Дирихле
Доказательства способом «от противного»
Принципы наибольшего и наименьшего числа и метод бесконечного спуска
Индукция
Доказательства методом математической индукции
Полная индукция и неполная индукция
Представление о математических доказательствах меняется со временем
Два аксиоматических метода — неформальный и формальный
Неформальный аксиоматический метод
Формальный аксиоматический метод
Теорема Гёделя.
Купить книгу Простейшие примеры математических доказательств, Успенский В.А., 2009 .
Теги: учебник по математике :: математика :: Успенский :: теорема Гёделя
Смотрите также учебники, книги и учебные материалы:
- Новые алгоритмы вычислительной гидродинамики для многопроцессорных вычислительных комплексов, монография, Головизнин В.М., Зайцев М.А., Карабасов С.А., Короткин И.А., 2013
- Математический кружок, 9 класс, Бугаенко В.О., 2000
- Точки Трокара и изогональное сопряжение, Прасолов В.В., 2000
- Инверсия, Жижилкин И.Д., 2009
- Проблема Борсука, Райгородский А.М., 2006
- Хроматические числа, Райгородский А.М., 2003
- Прогулки по замкнутым поверхностям, Смирнов С.Г., 2003
- Ладейные числа и многочлены, Кохась К.П., 2003