Математическая олимпиада школьников города Омска имени Кукина Г.П., 2007-2008 и 2008-2009 годы, Сборник задач, Адельшин А.В., Кукина Е.Г., Латыпов Е.А., 2009

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Математическая олимпиада школьников города Омска им. Г.П. Кукина, 2007-2008 и 2008-2009 годы, Сборник задач, Адельшин А.В., Кукина Е.Г., Латыпов Е.А., 2009.
 
   Книга предназначена для школьников, учителей, преподавателей математических кружков и любителей математики. В ней содержатся задачи математической олимпиады города Омска имени Г.П. Кукина за 2007-2008 и 2008-2009 учебные годы. Все задачи снабжены подробными решениями.

Математическая олимпиада школьников города Омска им. Г.П. Кукина, 2007-2008 и 2008-2009 годы, Сборник задач, Адельшин А.В., Кукина Е.Г., Латыпов Е.А., 2009

Примеры.
Имеются гири трёх типов: тяжёлые, средние и лёгкие. У всех тяжёлых гирь веса одинаковые, у всех средних одинаковые, и у всех лёгких тоже одинаковые. Известно, что одну из гирь можно уравновесить двумя другими, причём одну из этих двух тоже можно уравновесить двумя другими. Сколько лёгких гирь уравновешивают тяжёлую (найдите все варианты ответа и докажите, что других нет)?

У Васи есть два кубика, на каждую грань которых он хочет написать одну из цифр от 0 до 9. Вася хочет так нарисовать цифры на гранях, чтобы получился «календарь»: приставляя кубики друг к другу, на верхних гранях можно было бы получить любую комбинацию от 01 до 31. Сможет ли он этого добиться?

В доме 25 этажей, но сломался лифт: теперь он может за одну минуту либо подняться на 14 этажей, либо спуститься на 11 (например, с 10-го этажа можно подняться на 24-й). Человек спускается на один этаж за 1 минуту. Что быстрее, спуститься с шестого этажа на первый пешком или съехать на лифте?

Содержание
Предисловие
Условия задач
5 класс. 2007-2008 уч. год
5 класс. 2008-2009 уч. год
6 класс. 2007-2008 уч. год
6 класс. 2008-2009 уч. год
7 класс. 2007-2008 уч. год
7 класс. 2008-2009 уч. год
8 класс. 2007-2008 уч. год
8 класс. 2008-2009 уч. год
9 класс. 2007-2008 уч. год
9 класс. 2008-2009 уч. год
10 класс. 2007-2008 уч. год
10 класс. 2008-2009 уч. год
11 класс. 2007-2008 уч. год
11 класс. 2008-2009 уч. год
Решения задач
5 класс. 2007-2008 уч. год
5 класс. 2008-2009 уч. год
6 класс. 2007-2008 уч. год
6 класс. 2008-2009 уч. год
7 класс. 2007-2008 уч. год
7 класс. 2008-2009 уч. год
8 класс. 2007-2008 уч. год
8 класс. 2008-2009 уч. год
9 класс. 2007-2008 уч. год
9 класс. 2008-2009 уч. год
10 класс. 2007-2008 уч. год
10 класс. 2008-2009 уч. год
11 класс. 2007-2008 уч. год
11 класс. 2008-2009 уч. год
Институт математики и информационных технологий.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математическая олимпиада школьников города Омска имени Кукина Г.П., 2007-2008 и 2008-2009 годы, Сборник задач, Адельшин А.В., Кукина Е.Г., Латыпов Е.А., 2009 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу Математическая олимпиада школьников города Омска им. Г.П. Кукина, 2007-2008 и 2008-2009 годы, Сборник задач, Адельшин А.В., Кукина Е.Г., Латыпов Е.А., 2009 - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 08:37:01