Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко А.П., 1991.
Книга является составной частью комплекса учебных пособий по курсу высшей математики, направленных на развитие и активизацию самостоятельной работы студентов ВУЗов. Содержатся теоретические сведения и наборы задач для аудиторных и индивидуальных заданий по следующим разделам: комплексные числа, неопределенные и определенные интегралы, функции нескольких переменных и обыкновенные дифференциальные уравнения.
Для студентов инженерно-технических специальных ВУЗов.
ПОНЯТИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ЧАСТНЫЕ ПРОИЗВОДНЫЕ.
Пусть каждой упорядоченной паре чисел (x, у) из некоторой области D(x, у) соответствует определенное число z € Е R. Тогда z называется функцией двух переменных х и у, х, у — независимыми переменными или аргументами, D — областью определения или существования функции, а множество Е всех значений функции — областью ее значений. Символически функция двух переменных записывается в виде равенства z = f(x, у), в котором f обозначает закон соответствия. Этот закон может быть задан аналитически (формулой), с помощью таблицы или графика. Так как всякое уравнение z = f(x, у) определяет, вообще говоря, в пространстве, в котором введена декартова система координат Oxyz, некоторую поверхность, то под графиком функции двух переменных будем понимать поверхность, образованную множеством точек М(х, у, z) пространства, координаты которых удовлетворяют уравнению z = f(x, у) (рис. 10.1).
Геометрически область определения функции D обычно представляет собой некоторую часть плоскости Оху, ограниченную линиями, которые могут принадлежать или не принадлежать этой области. В первом случае область D называется замкнутой и обозначается D, во втором — открытой.
Оглавление
Предисловие
Методические рекомендации
7. Комплексные числа и действия над ними
7.1. Основные понятия. Операции над комплексными числами
7.2. Дополнительные задачи к гл. 7
8. Неопределенный интеграл
8.1. Первообразная функции и неопределенный интеграл
8.2. Непосредственное интегрирование функций
8.3. Интегрирование функций, содержащих квадратный трехчлен
8.4. Интегрирование заменой переменной (подстановкой)
8.5. Интегрирование по частям
8.6. Интегрирование рациональных функций
8.7. Интегрирование некоторых иррациональных функций
8.8. Интегрирование тригонометрических выражений
8.9. Индивидуальные домашние задания к гл. 8
8.10. Дополнительные задачи к гл. 8
9. Определенный интеграл
9.1. Понятие определенного интеграла. Вычисление определенных интегралов
9.2. Несобственные интегралы
9.3. Приложение определенных интегралов к задачам геометрии
9.4. Приложение определенных интегралов к решению физических задач
9.5. Индивидуальные домашние задания к гл. 9
9.6. Дополнительные задачи к гл. 9
10. Дифференциальное исчисление функций нескольких переменных
10.1. Понятие функции нескольких переменных. Частные производные
10.2. Полный дифференциал. Дифференцирование сложных и неявных функций
10.3. Частные производные высших порядков. Касательная плоскость и нормаль к поверхности
10.4. Экстремум функции двух переменных
10.5. Индивидуальные домашние задания к гл. 10
10.6. Дополнительные задачи к гл. 10
11. Обыкновенные дифференциальные уравнения
11.1. Основные понятия. Дифференциальные уравнения первого порядка. Метод изоклин
11.2. Дифференциальные уравнения с разделяющимися переменными. Однородные уравнения
11.3. Линейные дифференциальные уравнения первого порядка. Уравнение Бернулли
11.4. Уравнения в полных дифференциалах
11.5. Дифференциальные уравнения высших порядков, допускающие понижение порядка
11.6. Линейные дифференциальные уравнения второго и высших порядков
11.7. Системы дифференциальных уравнений
11.8. Индивидуальные домашние задания к гл. 11
11.9. Дополнительные задачи к гл. 11
Приложения
Рекомендуемая литература.
Купить книгу Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко А.П., 1991 .
Купить книгу Сборник индивидуальных заданий по высшей математике, Часть 2, Рябушко А.П., 1991 .
Теги: учебник по математике :: математика :: Рябушко
Смотрите также учебники, книги и учебные материалы:
- Теория вероятностей в примерах и задачах, Колемаев В.А., Калинина В.Н., Соловьёв В.И., 2001
- Избранные задачи по вещественному анализу, Макаров Б.М., Голузина М.Г., Лодкин А.А., 1992
- Высшая математика в упражнениях и задачах, часть 2, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
- Высшая математика в упражнениях и задачах, часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
- Избранные задачи, Сборник, Алексеев В.М., 1977
- Задачи Арнольда, Арнольд В.И., 2000
- Задачи по математическим методам физики, Колоколов И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., 2000
- Сборник задач по элементарной математике повышенной трудности, Шахно К.У., 1965