Математический анализ, Интегралы, Аксёнов А.П., 2000

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Математический анализ, Интегралы, Аксёнов А.П., 2000.

Пособие соответствует государственному стандарту дисциплины «Математический анализ» направления бакалаврской подготовки 510200 «Прикладная математика и информатика».
Содержит изложение теоретического материала в соответствии с действующей программой по темам: «Ряды Фурье», «Интеграл Фурье», «Суммирование расходящихся рядов». Приведено большое количество примеров. Изложено применение методов Чезаро и Абеля – Пуассона в теории рядов. Рассмотрен вопрос о гармоническом анализе функций, заданных эмпирически.
Предназначено для студентов физико-механического факультета специальностей 010200, 010300, 071100, 210300, а также для преподавателей, ведущих практические занятия.

Математический анализ, Интегралы, Аксёнов А.П., 2000

Касательная плоскость и нормаль к поверхности.
Определение. Пусть дана поверхность (S) и пусть точка N(x0, y0, z0) € (S).
Рассмотрим всевозможные кривые, лежащие на (S) и проходящие через точку N. Проведем к этим кривым в точке N касательные прямые. Если геометрическим место этих касательных прямых оказывается плоскость, то она называется касательной плоскостью к поверхности (S) в точке N, а перпендикуляр к этой плоскости в точке N называется нормалью к поверхности (S) в точке N.

Пусть данная поверхность (S) имеет уравнение F(x,y,z) = 0.
Предполагаем, что функция F(x,y,z) непрерывна и имеет непрерывные частные производные Fx, F'y, F'z в некоторой пространственной области. Точки поверхности (S), в которых одновременно F'x(x,y,z) = 0, F'y(x,y,z) = 0, F'z(x,y,z) = 0, называются особыми точками. Остальные точки поверхности (S) называются обыкновенными.

ОГЛАВЛЕНИЕ
ГЛАВА I. СОБСТВЕННЫЕ ИНТЕГРАЛЫ. ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА
§1. Определение интегралов, зависящих от параметра
§2. О допустимости предельного перехода по параметру под знаком интеграла
§3. О непрерывности интеграла как функции параметра
§4. О дифференцировании по параметру под знаком интеграла
§5. Об интегрировании по параметру под знаком интеграла
§6. Случаи, когда и пределы интеграла зависят от параметра
§7. Примеры к главе 1
ГЛАВА 2. ДВОЙНЫЕ ИНТЕГРАЛЫ
§1. Область и ее диаметр
§2. Определение двойного интеграла
§3. Признаки интегрируемости функций
§4. Свойства двойных интегралов
§5. Вычисление двойного интеграла в случае прямоугольной области
§6. Вычисление двойного интеграла в случае криволинейной области
§7. Примеры к главе 2
ГЛАВА 3. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ
§1. Криволинейные интегралы первого рода
§2. Криволинейные интегралы второго рода
§3. Криволинейные интегралы второго рода но замкнутым плоским кривым. Формула Грина
§4. Вопрос о независимости криволинейного интеграла второго рода от пути интегрирования
§5. Площадь плоской фигуры в криволинейных координатах
§6. Замена переменных в двойном интеграле
§7. Примеры к главе 3
ГЛАВА 4. ВЫЧИСЛЕНИЕ ПЛОЩАДЕЙ КРИВЫХ ПОВЕРХНОСТЕЙ
§1. Некоторые сведения из геометрии
§2. Существование площади кривой поверхности и ее вычисление
§3. Примеры к главе 4
ГЛАВА 5. НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА
§1. Определение равномерной сходимости несобственных интегралов
§2. О непрерывности интеграла как функции параметра
§3. Об интегрировании по параметру под знаком интеграла
§4. О дифференцировании по параметру под знаком интеграла
§5. Признак равномерной сходимости несобственных интегралов
§6. Примеры к главе 5
ГЛАВА 6. ЭЙЛЕРОВЫ ИНТЕГРАЛЫ
§1. Интеграл Эйлера первого рода (Бета-функция)
§2. Интеграл Эйлера второго рода (Гамма-функция)
§3. Примеры к главе 6
Литература.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математический анализ, Интегралы, Аксёнов А.П., 2000 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу Математический анализ, Интегралы, Аксёнов А.П., 2000 - pdf - depositfiles.

Скачать книгу Математический анализ, Интегралы, Аксёнов А.П., 2000 - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 18:46:21