Краткий курс высшей математики для химико-биологических и медицинских специальностей, Баврин И.И., 2003.
Профессионально ориентированный учебник содержит изложение элементов аналитической геометрии, математического анализа, теории вероятностей и математической статистики, сопровождаемое рассмотрением математических моделей из физики, химии, биологии и медицины. Приведено много примеров и задач, иллюстрирующих понятия высшей математики и се методы, а также упражнений для самостоятельной работы. Может быть использован студентами других ВУЗов и учреждений среднего профессионального образования.
ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.
Метод координат на плоскости
1. Декартовы прямоугольные координаты. Выберем на плоскости две взаимно перпендикулярные прямые Ох и Оу с указанными на них положительными направлениями. Прямые Ох и Оу называются координатными осями. точка их пересечения О — началом координат. Обычно полагают, что ось Ох горизонтальна, а ось Оу вертикальна относительно наблюдателя; положительное направление на Ох слева направо, на Оу — снизу вверх (рис. 1).
Возьмем теперь некоторую единицу масштаба, с помощью которой будут производиться все измерения на плоскости хOу.
Совокупность координатных осей Ох, Оу и выбранной единицы масштаба называется декартовой прямоугольной (или кратко прямоугольной) системой координат на плоскости*).
Произвольной точке М плоскости поставим в соответствие два числа (рис. 1):
а) абсциссу х, равную расстоянию точки М от оси Оу, взятому со знаком «+», если М лежит правее Оу, и со знаком «-», если М лежит левее О у,
б) ординату у, равную расстоянию точки М от оси Ох, взятому со знаком «+», если М лежит выше Ох, и со знаком «-», если М лежит ниже Ох.
Оглавление
От автора
Часть I
ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ И МАТЕМАТИЧЕСКОГО АНАЛИЗА
Введение
Глава I. Элементы аналитической геометрии
§ 1. Метод координат на плоскости
§ 2. Прямая линия
§ 3. Основные задачи на использование уравнений прямой
§ 4. Кривые второго порядка
§ 5. Простейшие сведения из аналитической геометрии в пространстве
§ 6. Определители второго и третьего порядков
Упражнения
Глава II. Функции, пределы, непрерывность
§ 7. Определение и способы задания функции
§ 8. Обзор элементарных функций и их графиков
§ 9. Предел функции
§ 10. Бесконечно малые и бесконечно большие величины
§ 11. Основные теоремы о пределах и их применение
§ 12. Непрерывность функции
§ 13. Комплексные числа
Упражнения
Глава III. Дифференциальное исчисление
§ 14. Понятие производной и ее геометрический смысл
§ 15. Правила дифференцирования и производные элементарных
функций
§ 16. Дифференциал функции
§ 17. Свойства дифференцируемых функций
§ 18. Возрастание и убывание функций. Максимумы и минимумы.
Асимптоты
§ 19. Построение графиков функций
Упражнения
Глава IV. Интегральное исчисление
§ 20. Первообразная функция и неопределенный интеграл
§ 21. Основные методы интегрирования
§ 22. Интегрирование дробно-рациональных функций и некоторых тригонометрических выражений
§ 23. Понятие определенного интеграла
§ 24. Основные свойства определенного интеграла
§ 25. Несобственные интегралы
§ 26. Геометрические и физические приложения определенного
интеграла
§ 27. Биологические приложения определенного интеграла
Упражнения
Глава V. Функции нескольких переменных
§ 28. Определение и основные свойства функции нескольких переменных
§ 29. Частные производные и дифференциалы
§ 30. Экстремум функции двух переменных
§ 31. Скалярное поле, его лапласиан
§ 32. Двойной интеграл
§ 33. Криволинейный интеграл
Упражнения
Глава VI. Ряды
§ 34. Числовые ряды
§ 35. Степенные ряды
§ 36. Ряд Фурье
Упражнения
Глава VII. Дифференциальные уравнения
§ 37. Задачи, приводящие к дифференциальным уравнениям
§ 38. Дифференциальные уравнения первого порядка, их частные случаи. Приложения в естествознании
§ 39. Дифференциальные уравнения второго порядка
§ 40. Линейные дифференциальные уравнения второго порядка
§ 41. Волновое уравнение и уравнение Лапласа
§ 42. Дифференциальные уравнения в биологии
Упражнения
Часть II
ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ
Введение
Глава VIII. Событие и вероятность
§ 43. Основные понятия. Определение вероятности
§ 44. Свойства вероятности
§ 45. Приложения в биологии
Упражнения
Глава IX. Дискретные и непрерывные случайные величины
§ 46. Случайные величины
§ 47. Математическое ожидание дискретной случайной величины.
§ 48. Дисперсия дискретной случайной величины
§ 49. Непрерывные случайные величины
§ 50. Некоторые законы распределения случайных величин
§ 51. Двумерные случайные величины
Упражнения
Глава X. Элементы математической статистики
§ 52. Генеральная совокупность и выборка
§ 53. Оценки параметров генеральной совокупности по ее выборке
§ 54. Доверительные интервалы для параметров нормального распределения
§ 55. Проверка статистических гипотез
§ 56. Линейная корреляция
Упражнения
Приложения
Литература.
Купить книгу Краткий курс высшей математики для химико-биологических и медицинских специальностей, Баврин И.И., 2003 .
Купить книгу Краткий курс высшей математики для химико-биологических и медицинских специальностей, Баврин И.И., 2003 .
Теги: учебник по высшей математике :: высшая математика :: Баврин
Смотрите также учебники, книги и учебные материалы:
- Математический анализ, Конечномерные линейные пространства, Шилов Г.Е.
- Математика в стихах, 5-11 класс, Панишева О.В., 2013
- Фракталы и хаос, Множество Мандельброта и другие чудеса, Мандельброт Б.Б., 2009
- Геометрия, 9 класс, Бутузов, Кадомцев, Прасолов, 2012
- Алгебра и элементарные функции, 9 класс, часть 1, Кочетков, Кочеткова, 1969
- Алгебра и элементарные функции, 10 класс, часть 2, Кочетков, Кочеткова, 1967
- Практические занятия по математике, Богомолов Н.В., 2003
- Вводный курс математической логики, Успенский В.А., Верещагин Н.К., Плиско В.Е., 2004