Сборник задач по курсу математического анализа, Берман Г.Н., 1985.
Сборник содержит систематически подобранные задачи и упражнения к основным разделам курса математического анализа. Большинство параграфов для удобства пользования подразделено на части. Группам задач с однородным содержанием предшествует общее указание. Перед задачами физического содержания даются нужные справки по физике.
Для студентов высших учебных заведений.
Настоящий «Сборник задач» предлагается студентам, изучающим математический анализ в объеме программы для высших технических учебных заведений. «Сборник» содержит систематически подобранные задачи и упражнения к основным разделам курса математического анализа.
Теоретические сведения и справки о необходимых формулах в «Сборнике задач» не помещены; имеется в виду, что читатель найдет их в соответствующих разделах учебника. Большинство параграфов «Сборника задач» для удобства пользования подразделено на части. Группам задач с однородным содержанием предшествует общее указание. Перед задачами физического содержания даются нужные справки по физике. Для более трудных задач указания к решению даны в разделе «Ответы»; такие задачи отмечены звездочкой (*).
ОГЛАВЛЕНИЕ
Из предисловия к семнадцатому изданию 6
Глава I. Функция 7
§ 1. Первоначальные сведения о функции 7
§ 2, Простейшие свойства функций 11
§ 3. Простейшие функции 14
§ 4. Обратная функция. Степенная, показательная и логарифмическая функции 19
§ 5, Тригонометрические и обратные тригонометрические функции 22
§ 6, Вычислительные задачи 25
Глава II. Предел. Непрерывность 27
§ 1. Основные определения 27
§ 2. Бесконечные величины. Признаки существования предела 29
§ 3. Непрерывные функции 32
§ 4. Нахождение пределов. Сравнение бесконечно малых 34
Глава III. Производная и дифференциал. Дифференциальное исчисление 44
§ 1. Производная. Скорость изменения функции 44
§ 2. Дифференцирование функций 47
§ 3. Дифференциал. Дифференцируемость функции 63
§ 4. Производная как скорость изменения (дальнейшие примеры) 66
§ 5. Повторное дифференцирование 73
Глава IV. Исследование функций и их графиков 79
§ 1. Поведение функции 79
§ 2. Применение первой производной 80
§ 3. Применение второй производной 89
§ 4. Дополнительные вопросы. Решение уравнений 92
§ 5. Формула Тейлора и ее применение 99
§ 6. Кривизна 101
§ 7. Вычислительные задачи 103
Глава V. Определенный интеграл 105
§ 1. Определенный интеграл и его простейшие свойства 105
§ 2. Основные свойства определенного интеграла 108
Глава VI. Неопределенный интеграл. Интегральное исчисление 114
§ 1. Простейшие приемы интегрирования 114
§ 2. Основные методы интегрирования 117
§ 3. Основные классы интегрируемых функций 121
Глава VII. Способы вычисления определенных интегралов. Несобственные интегралы 128
§ 1. Способы точного вычисления интегралов 128
§ 2. Приближенные методы 135
§ 3. Несобственные интегралы 138
Глава VIII. Применения интеграла 143
§ 1. Некоторые задачи геометрии и статики 143
§ 2. Некоторые задачи физики 158
Глава IX. Ряды 168
§ 1. Числовые ряды 163
§ 2. Функциональные ряды 172
§ 3. Степенные ряды 175
§ 4. Некоторые применения рядов Тейлора 178
Глава X. Функции нескольких переменных. Дифференциальное исчисление 182
§ 1. Функции нескольких переменных 182
§ 2. Простейшие свойства функций 184
§ 3. Производные и дифференциалы функций нескольких переменных J88
§ 4. Дифференцирование функций 192
§ 5. Повторное дифференцирование 195
Глава XI. Применения дифференциального исчисления функций нескольких переменных 199
§ 1. Формула Тейлора. Экстремумы функций нескольких переменных 199
§ 2. Плоские линии 204
§ 3. Векторная функция скалярного аргумента. Линии в пространстве. Поверхности 206
§ 4. Скалярное поле. Градиент. Производная по направлению 211
Глава XII. Многомерные интегралы и кратное интегрирование 213
§ 1. Двойные и тройные интегралы 213
§ 2. Кратное интегрирование 214
§ 3. Интегралы в полярных, цилиндрических и сферических координатах 217
§ 4. Применение двойных и тройных интегралов 220
§ 5. Несобственные интегралы. Интегралы, зависящие от параметра 229
Глава XIII. Криволинейные интегралы и интегралы по поверхности 235
§ 1. Криволинейные интегралы по длине 235
§ 2. Криволинейные интегралы по координатам 238
§ 3. Интегралы по поверхности 243
Глава XIV. Дифференциальные уравнения 247
§ 1. Уравнения первого порядка 247
§ 2. Уравнения первого порядка (продолжение) 258
§ 3. Уравнения второго и высших порядков 261
§ 4. Линейные уравнения 265
§ 5. Системы дифференциальных уравнений 270
§ 6. Вычислительные задачи 273
Глава XV. Тригонометрические ряды 276
§ 1. Тригонометрические многочлены 276
§ 2. Ряды Фурье 277
§ 3. Метод Крылова. Гармонический анализ 280
Глава XVI. Элементы теории поля 282
Ответы 283
Купить книгу Сборник задач по курсу математического анализа, Берман Г.Н., 1985 .
Купить книгу Сборник задач по курсу математического анализа, Берман Г.Н., 1985 .
Теги: задачник по математике :: математика :: Берман :: интеграл
Смотрите также учебники, книги и учебные материалы:
- Экзаменационные материалы по математике и физике 2010 года, Дориченко С.А., Егоров А.А., Тихомирова В.А., 2011
- Заочные математические олимпиады, Васильев Н.Б., Гутенмахер В.Л., Раббот Ж.М., Тоом А.Л., 1987
- Задачи Всесоюзных математических олимпиад, Васильев Н.Б., Егоров А.А., 1988
- Сборник задач по математике Стэнфордского университета, Пойа Д., Килпатрик Д., 2002
- Математика, ответы на вопросы, Устный экзамен, теория и практика, Якушева Е.В., Попов А.В., Якушев А.Г., 1998
- ГИА 2012, математика, 9 класс, демонстрационный вариант, 2011
- ГИА 2012 год, математика, прототипы задания, 2011
- Математика, итоговая аттестация, типовые тестовые задания, Иляшенко Л.А., 2009