Автор: Егоров А.И.
Для студентов университетов и технических вузов, для преподавателей и научных работников, интересующихся обыкновенными дифференциальными уравнениями и их приложениями.
ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1 Дифференциальные уравнения и их классификация 5
1 Основные понятия и определения 5
1 1 Дифференциальные уравнения и их классификация (5) 1 2 Системы дифференциальных уравнений (9) 1 3 Уравнения с частными производными (12)
2 Прикладные задачи, приводящие к дифференциальным уравнениям 14
2 1 Радиоактивный распад (14) 2 2 Движение материальной точки (15) 2 3 Процесс теплопереноса (16)
Глава 2 Методы решения уравнений первого порядка 19
1 Предварительный анализ уравнений Поле направлений и изоклины 19
1 1 Уравнения первого порядка Общая характеристика (19) 1 2 Геометрический смысл уравнения (21)
2 Элементарные методы интегрирования 22
2 1 Метод разделения переменных (23) 2 2 Однородные уравнения (24)
2 3 Уравнения, приводящиеся к однородным (25) 2 4 Линейные уравнения (27)
2 5 Уравнения, приводящиеся к линейным (30)
3 Уравнения в полных дифференциалах Интегрирующий множитель 31
3 1 Уравнения в полных дифференциалах (31) 3 2 Интегрирующий множитель (34)
4 Нелинейные дифференциальные уравнения первого порядка и методы
их решения 37
4 1 Общие замечания о нелинейных уравнениях (37) 4 2 Уравнения, не содержащие одной из переменных 39 4 3 Общий метод введения параметра (41)
4 4 Уравнения Лагранжа (42) 4 5 Уравнения Клеро (44)
5 Два способа построения особого решения 45
6 Уравнение Риккати 49
6 1 Общие свойства решений (49) 6 2 Примеры интегрируемых уравнений Риккати (52) 6 3 Один замечательный пример уравнения Риккати (53)
7 Свойства решений уравнений Риккати 56
Глава 3 Основы теории уравнений высших порядков 65
1 Уравнения высших порядков Основные определения 65
2 Уравнения, решаемые в квадратурах 68
2 1 Уравнение у^ = f(x) (68) 2 2 Уравнение у^ = Ду(п_1)) (71) 2 3 Уравнение F(y(n\y(n-^) = 0 (71)
3 Решение линейных однородных уравнений высших порядков 72
3 1 Общие свойства однородных уравнений (72) 3 2 Решение линейных однородных уравнений с постоянными коэффициентами (77)
4 Решение линейных неоднородных уравнений 81
4 1 Структура общего решения (81) 4 2 Построение частного решения (82) 4 3 Неоднородное уравнение с постоянными коэффициентами (84) 4 4 Уравнения, приводящиеся к уравнениям с постоянными коэффициентами (88)
5 Уравнения второго порядка Функция Грина 90
5 1 Стандартная форма уравнения (90) 5 2 Краевая задача и функция Грина (92) 5 3 Краевая задача для неоднородного уравнения (94) 5 4 Проблема собственных значений и интегральные уравнения (97)
6 Аналитические решения уравнения второго порядка 99
6 1 Уравнения с колеблющимися решениями (99) 6 2 Интегрирование уравнения с помощью степенных рядов (101)
7 Промежуточный интеграл Уравнения, допускающие понижение порядка 104
7 1 Промежуточный интеграл (104) 7 2 Уравнения, допускающие понижение порядка (104)
Глава 4 Системы дифференциальных уравнений 109
1 Системы линейных уравнений 109
1 1 Основные понятия и определения (109) 1 2 Системы линейных однородных уравнений (112)
2 Системы линейных однородных уравнений с постоянными коэффициентами 116
2 1 Алгебраический способ решения (117) 2 2 Применение функций от матриц (121)
3 Системы линейных неоднородных уравнений 128
4 Теорема существования и единственности решения 131
4 1 Теорема Коши (131) 4 2 Основные следствия (135)
5 Зависимость решения от параметров 137
6 Нелинейные системы уравнений первого порядка 141
6 1 Основные свойства системы в нормальной форме (142) 6 2 Фазовое пространство и фазовые траектории (146) 6 3 Интегралы системы дифференциальных уравнений (148) 6 4 Понижение порядка системы с помощью первых интегралов (149) 6 5 Симметричная форма системы уравнений (150) 6 6 Точки покоя системы второго порядка Классификация особых точек (152)
7 Уравнения Риккати и линейные системы второго порядка 158
7 1 Уравнения Риккати и линейные системы (158) 7 2 Системы уравнений Риккати (159)
Глава 5 Матричные дифференциальные уравнения 163
1 Матричные многочленные уравнения 163
1 1 Уравнение АХ - ХВ = в (163) 1 2 Перестановочные матрицы (168) 1 3 Решение линейного неоднородного уравнения (170) 1 4 Скалярное уравнение (171) 1 5 Полиномиальное уравнение (172)
2 Квадратный корень из матрицы 173
2 1 Уравнение с жордановой матрицей (174) 2 2 Уравнение с особенной матрицей (178)
3 Линейное дифференциальное уравнение 184
3 1 Однородное уравнение (184) 3 2 Неоднородное уравнение (187)
3 3 Частное решение неоднородного уравнения Формула Коши (188) 3 4 Уравнение Бернулли (190)
4 Матричное дифференциальное уравнение Риккати 191
4 1 Простейшие свойства решений (191) 4 2 Уравнение с постоянными коэффициентами (194) 4 3 Существование решения (197)
5 Уравнение Риккати в методе прогонки 200
5 1 Краевая задача для скалярного дифференциального уравнения (200)
5 2 Краевая задача для векторного дифференциального уравнения (203)
6 Уравнение Риккати в теории управления 206
6 1 Задача об аналитическом конструировании регуляторов и об оптимальной стабилизации (206) 6 2 Оптимальный фильтр Каллмана-Бьюси (211)
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Обыкновенные дифференциальные уравнения с приложениями - Егоров А.И. - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - Книгу - Обыкновенные дифференциальные уравнения с приложениями - Егоров А.И. - depositfiles.com
Скачать - Книгу - Обыкновенные дифференциальные уравнения с приложениями - Егоров А.И. - letitbit.net
Дата публикации:
Теги: математика :: обыкновенный дифференциальные уравнения :: Егоров :: скачать учебник по математике бесплатно
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Математика для экономистов, линейная алгебра, Малугин В.А.
- Математика для экономистов, математический анализ, Малугин В.А.
- Математика и ее история - Стиллвелл Д.
- Основные математические формулы - Воднев В.Т., Наумович А.Ф., Богданов Ю.С.
Предыдущие статьи:
- Неожиданный шаг или 113 красивых задач - Мерзляк А.Г., Полонский В.Б., Якир М.С.
- Методика построения графиков функций - Егерев В.К., Радунский Б.А., Тальский Д.А.
- Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.Х.
- Математические головоломки и развлечения - Мартин Гарднер