Электронный парамагнитный резонанс переходных ионов, том 2, Абрагам А., Блини Б., 1973

Электронный парамагнитный резонанс переходных ионов, Том 2, Абрагам А., Блини Б., 1973.

   Монография, написанная крупнейшими специалистами в области парамагнитного резонанса А. Абрагамом (Франция) и Б. Блини (Англия), — первое в мировой литературе обстоятельное введение в данную область физики. В том 1, выпущенный в русском переводе изд-вом «Мир» в 1972 г., вошли две первые части монографии. Настоящий том включает третью часть, содержащую основы теории парамагнитного резонанса. В ней изложены элементы теории групп, необходимые для глубокого понимания парамагнитного резонанса, метод эквивалентных операторов, теория сверхтонкой структуры ЭПР-спектров, рассмотрены различные эффекты, обусловливающие сверхтонкую структуру. Монография отличается цельностью и строгостью изложения.
Книга предназначена для физиков, химиков, биологов, специалистов в области квантовой электроники, а также аспирантов и студентов физических и физико-технических факультетов вузов.

Электронный парамагнитный резонанс переходных ионов, Том 2, Абрагам А., Блини Б., 1973


LS-тип связи и формула Ланде.
В нерелятивистской теории взаимодействия внутри атома можно разделить на две группы: взаимодействия, зависящие от спина, и взаимодействия, не зависящие от спина.

В общем случае (возможное исключение составляют самые тяжелые атомы) взаимодействия, зависящие от спина, намного слабее орбитальных взаимодействий, и ими в первом приближении можно пренебречь. Такое приближение при описании состояний атомов называют методом Расселя — Саундерса; при этом говорят также об LS-типе связи. Известно, что при таком описании квантовое число L полного орбитального момента атома является хорошим квантовым числом (этот результат вытекает из инвариантности гамильтониана свободного атома относительно вращений, и мы обсудим его в гл. 13 с точки зрения теории групп).

Вторым хорошим квантовым числом является полный спин 5. Важно подчеркнуть, что в противоположность L величина S является хорошим квантовым числом просто потому, что при LS-типе связи малы все взаимодействия, зависящие от спина, и этот факт никак не связан с инвариантностью гамильтониана относительно вращений. Как показал Дирак в своей книге [1], в главе, посвященной тождественным частицам, квантовое число S характеризует тип симметрии электронной волновой функции по отношению к перестановке пространственных координат различных атомных электронов. Действительно, можно (и это делалось на заре квантовой механики) классифицировать атомные уровни энергии, вовсе не упоминая о спине, а пользуясь языком теории группы перестановок. Однако тот факт, что электронная волновая функция антисимметрична по отношению к одновременным перестановкам как пространственных, так и спиновых координат двух электронов, позволяет по крайней мере частично упростить это сложное описание путем введения полного спина S как хорошего квантового числа.

ОГЛАВЛЕНИЕ.
ЧАСТЬ III ТЕОРЕТИЧЕСКИЙ ОБЗОР.
ГЛАВА 11. ЭНЕРГИЯ ЭЛЕКТРОНОВ В МАГНИТНОМ ПОЛЕ.
§1. Взаимодействие электронов с магнитным полем.
§2. Эффект Зеемана для свободного атома (или иона).
§3. LS-тип связи и формула Ланде.
§4. Электронные конфигурации в методе самосогласованного поля.
§5. Спин-орбитальное взаимодействие.
§6. Матричные элементы между слэтеровскими детерминантами.
§7. Введение кристаллического поля.
Литература.
ГЛАВА 12. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ГРУПП.
§1. Инвариантность гамильтониана и вырождение уровней энергии.
§2. Линейные представления групп, эквивалентные и неприводимые представления.
§3. Соотношения ортогональности, характеры представлений и классы группы.
§4. Разложение представления и вычисление характеров неприводимых представлений.
§5. Расщепление вырожденных уровней энергии под действием возмущения низкой симметрии.
§6. Прямое произведение двух представлений.
Литература.
ГЛАВА 13. ГРУППА ВРАЩЕНИИ.
§1. Угловой момент.
§2. Неприводимые представления группы вращений.
§3. Сложение моментов.
§4. Векторное сложение нескольких моментов и символы Рака.
§5. Неприводимые тензорные операторы, теорема Вигнера — Эккарта и эквивалентные операторы.
Литература.
ГЛАВА 14. КУБИЧЕСКАЯ И НЕКОТОРЫЕ ДРУГИЕ ГРУППЫ.
§1. Кубическая группа.
§2. Фиктивный угловой момент.
§3. Мультиплеты Г4 и Г5 в тригональных осях.
§4. Двойная кубическая группа.
§5. Группы более низкой симметрии.
§6. Несобственные вращения.
Литература.
ГЛАВА 15. ОБРАЩЕНИЕ ВРЕМЕНИ И КРАМЕРСОВО ВЫРОЖДЕНИЕ.
§1. Преобразования, включающие время.
§2. Комплексное сопряжение.
§3. Определение оператора обращения времени.
§4. Крамерсово вырождение.
§5. Оператор обращения времени в |J, М) - представлении.
§6. Спиновый гамильтониан для крамерсова дублета.
§7. Ромбическая группа.
§8. Тригональная симметрия.
§9. Правила отбора, связанные с обращением времени.
§10. Парамагнитный ион во внешнем электрическом поле.
Литература.
ГЛАВА 16. ЭЛЕМЕНТАРНАЯ ТЕОРИЯ КРИСТАЛЛИЧЕСКОГО ПОЛЯ.
§1. Кристаллическое поле (или кристаллический потенциал).
§2. Эквивалентные операторы.
§3. Недиагональные матричные элементы кристаллического поля.
§4. Электронные зеемановские взаимодействия.
§6. Электронные спин-спиновые взаимодействия.
Литература.
ГЛАВА 17. СВЕРХТОНКАЯ СТРУКТУРА.
§1. Электростатические сверхтонкие взаимодействия.
§2. Магнитные сверхтонкие взаимодействия.
§3. Другой способ вывода гамильтониана магнитного сверхтонкого взаимодействия.
§4. Эквивалентные операторы, описывающие магнитную сверхтонкую структуру.
§5. Влияние s-электронов: конфигурационное взаимодействие.
§6. Влияние s-электронов: поляризация остова.
§7. Более тонкие эффекты в теории сверхтонкой структуры.
Литература.
ГЛАВА 18. ИОНЫ В СЛАБОМ КРИСТАЛЛИЧЕСКОМ ПОЛЕ (f-ЭЛЕКТРОНЫ).
§1. Ионы с нечетным числом электронов в слабом кристаллическом поле.
§2. Ионы редкоземельных элементов в кристаллах кубической симметрии.
§3. Квадруплет Г8.
§4. Представление неприводимого тензора в пределах квадруплета Г8 — квадрупольное взаимодействие.
§5. Ионы редкоземельных элементов с четным числом электронов.
§6. Ионы редкоземельных элементов с четным числом электронов в кубическом окружении.
Литература.
ГЛАВА 19. ПРОМЕЖУТОЧНЫЕ КРИСТАЛЛИЧЕСКИЕ ПОЛЯ (ГРУППА ЖЕЛЕЗА).
§1. Действие кубического кристаллического потенциала.
§2. «Синглетные» орбитальные основные состояния (ионы типа А).
§3. Триплетное орбитальное основное состояние (ионы типа Б).
§4. Отклонения от кубической симметрии.
§5. Влияние возбужденных термов.
ГЛАВА 20. ВЛИЯНИЕ КОВАЛЕНТНОЙ СВЯЗИ.
§1. Краткие выводы из предшествующей теории.
§2. Ковалентная связь в модели молекулярных орбиталей.
§3. Связывающие и антисвязывающие орбитали, перекрытие и ковалентность.
§4. Основные состояния в соединениях со слабой ковалентной связью
§5. Орбитальный момент и спин-орбитальное взаимодействие при наличии ковалентной связи.
§6. Суперсверхтонкая структура в спектрах ионов типа А.
§7. Дополнительные члены в гамильтониане суперсверхтонкого взаимодействия лигандов для орбитальных синглетов.
§8. Суперсверхтонкая структура в спектрах ионов типа Б.
§9. Квадрупольная суперсверхтонкая структура.
Литература.
ГЛАВА 21. ЭФФЕКТ ЯНА-ТЕЛЛЕРА В ПАРАМАГНИТНОМ РЕЗОНАНСЕ.
§1. Введение.
§2. Приближение Борна — Оппенгеймера и теорема Яна — Теллера.
§3. Магнитные свойства уровня 2Е.
§4. Статический эффект Яна—Теллера в состоянии 2Е.
§5. Динамические характеристики статического эффекта Яна — Теллера.
§6. Динамический эффект Яна—Теллера в состоянии 2Е.
§7. Сужение ян-теллеровского спектра за счет движения.
§8. Сравнение с экспериментом.
§9. Эффект Яна — Теллера в триплетном состоянии.
§10. Эффект Яна— Теллера в орбитальном триплетном состоянии. Взаимодействие с тетрагональными (Г3) колебаниями.
§11. Эффект Яна —Теллера в орбитальном триплетном состоянии. Взаимодействие с тригональными (Г5) колебаниями.
§12. Сравнение с экспериментом.
Литература.
ПРИЛОЖЕНИЕ А. ТЕПЛОВЫЕ И МАГНИТНЫЕ СВОЙСТВА ПАРАМАГНИТНЫХ ВЕЩЕСТВ.
Литература.
ПРИЛОЖЕНИЕ Б. НЕКОТОРЫЕ ОБЩИЕ ТАБЛИЦЫ.
АВТОРСКИЙ УКАЗАТЕЛЬ.
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Электронный парамагнитный резонанс переходных ионов, том 2, Абрагам А., Блини Б., 1973 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-21 17:05:45