Введение в методы оптимизации, Аттетков А.В., Зарубин В.С., Канатников А.Н., 2008

Введение в методы оптимизации, Аттетков А.В., Зарубин В.С., Канатников А.Н., 2008.

   Освещается одно из важнейших направлений математики — теория оптимизации. Рассмотрены теоретические, вычислительные и прикладные аспекты методов конечномерной оптимизации. Описаны алгоритмы численного решения задач безусловной минимизации функций одного и нескольких переменных, изложены методы условной оптимизации. Приведены примеры решения конкретных задач, дана наглядная интерпретация полученных результатов.
Для студентов, аспирантов и преподавателей технических, экономических и других вузов.

Введение в методы оптимизации, Аттетков А.В., Зарубин В.С., Канатников А.Н., 2008


Примеры задач оптимизации.
Рассмотрим некоторые задачи оптимизации, возникающие в геометрии, алгебре и других разделах математики. Многие из подобных задач можно решить геометрическим или алгебраическим путем, а также с помощью методов исследования функции на экстремум, изучаемых в курсе математического анализа. Рассматриваемые задачи тесно связаны с историей развития методов оптимизации и позволяют наглядно продемонстрировать многообразие объектов оптимизации — тех устройств, процессов или явлений, при исследовании которых возникают задачи оптимизации. Кроме того, они наглядно показывают, как возникает проблема поиска оптимального решения и как такая проблема превращается в конкретную математическую задачу. Наконец, подходы к решению простейших задач оптимизации являются источниками важнейших идей, лежащих в основе современных методов решения задач оптимизации.

СОДЕРЖАНИЕ.
Предисловие.
Список принятых обозначений.
Введение.
Глава 1. Задачи оптимизации.
1.1. Основные понятия.
1.2. Примеры задач оптимизации.
1.3. Классы задач оптимизации.
Вопросы для самопроверки.
Глава 2. Методы одномерной минимизации.
2.1. Предварительные замечания.
2.2. Методы прямого поиска.
2.3. Сравнение методов прямого поиска.
2.4. Методы полиномиальной аппроксимации.
Вопросы для самопроверки.
Глава 3. Многомерная безусловная минимизация.
3.1. Методы спуска.
3.2. Метод градиентного спуска.
3.3. Минимизация квадратичной функции.
3.4. Метод сопряженных направлений.
3.5. Метод Ньютона и его модификации.
3.6. Квазиньютоновские методы.
3.7. Методы прямого поиска.
3.8. Методы случайного поиска.
Вопросы для самопроверки.
Глава 4. Аналитические методы нелинейного программирования.
4.1. Минимизация целевой функции на заданном множестве
4.2. Минимизация при ограничениях типа равенства.
4.3. Общая задача нелинейного программирования.
4.4. Седловая точка функции Лагранжа.
4.5. Двойственная функция.
Вопросы для самопроверки.
Глава 5. Численные методы нелинейного программирования.
5.1. Метод условного градиента.
5.2. Использование приведенного градиента.
5.3. Проектирование точки на множество.
5.4. Метод проекции точки на множество.
5.5. Метод проекции антиградиента.
5.6. Метол возможных направлений.
5.7. Методы последовательной безусловной минимизации
Вопросы для самопроверки.
Глава 6. Методы линейного программирования.
6.1. Виды задач линейного программирования.
6.2. Графический метод решения задач линейного программирования.
6.3. Основы теории линейного программирования.
6.4. Симплекс-метод.
6.5. Построение начального допустимого базисного решения.
6.6. Двойственная задача линейного программирования.
Вопросы для самопроверки.
Список рекомендуемой литературы.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Введение в методы оптимизации, Аттетков А.В., Зарубин В.С., Канатников А.Н., 2008 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-21 08:43:44