Задачи Санкт-Петербургской олимпиады школьников по математике 2016 года, Кохась К., Берлов С.Л., Власова Н., Храбров А., 2017.
Книга предназначена для школьников, учителей, преподавателей математических кружков и просто любителей математики. Читатель найдет в ней задачи Санкт-Петербургской олимпиады школьников по математике 2016 года, а также открытой олимпиады ФМЛ № 239, которая, не будучи туром Санкт-Петербургской олимпиады, по характеру задач, составу участников и месту проведения является прекрасным дополнением к ней.
Все задачи приведены с подробными решениями, условия и решения геометрических задач сопровождаются рисунками.
В качестве дополнительного материала приводится отчет об олимпиаде «Туймаада—2015», большая подборка задач об угадывании цвета своей шляпы, поучительнейшая сказка, в которой Бусенька, спекулируя понятием «площадь», помогает Ушасе обыграть самого Уккха, а также не менее поучительный комментарий к этой сказке.
Примеры.
Расставьте в клетках указанной фигурки числа от 5 до 14 так. чтобы суммы чисел во всех доминошках были разными (доминошка — это прямоугольник. состоящий из двух клеток, соседних по стороне).
Приходя в школу, Вася здоровается со всеми одноклассниками (кроме, разумеется, самого себя). К началу уроков Вася не успел поздороваться ровно с одной четвертью от общего числа учеников своего класса, в том числе с Колей. А Коля к этому времени поздоровался ровно с одной седьмой из тех одноклассников, с которыми поздоровался Вася. Какое наименьшее число учеников может быть в классе? Не забудьте обосновать ответ.
Надя задумала число n, делящееся на 500, и выписала на доску все его натуральные делители, кроме самого числа n. Докажите, что сумма нечетных чисел на доске меньше, чем сумма четных.
Дети в классе угощали друг друга конфетами. Каждый мальчик дал по конфете всем, кто выше сто, а каждая девочка — всем, кто ниже ее (все дети разного роста). Оказалось, что Саша, Женя и Валя получили поровну конфет, а все остальные — меньше, чем они. Докажите, что кто-то из этих троих - девочка.
Содержание.
Победители олимпиады 2016 года.
Статистические данные олимпиады 2016 года.
Условия задач.
Первый тур.
Второй тур.
Олимпиада 239 школы.
Вторые варианты задач.
Решения задач.
Уголок олимпиадофила.
Какого цвета моя шляпа?
К. Кохась, К. Куюмжиян, Г. Челноков.
Международная олимпиада «Туймаада-2015» А. Голованов, М. Иванов, К. Кохась.
Уголок олимпиадофоба.
Чья площадь больше? К. Кохась.
Какая такая площадь? В. Могунова.
Купить .
Теги: задачник по математике :: математика :: Кохась К. :: Берлов :: Власова :: Храбров
Смотрите также учебники, книги и учебные материалы:
- Контрольные работы по математике, 5 класс, Ерина Т.М., Ерина М.Ю., 2020
- Тренажёр по математике, 3-4 классы, Чурсина Л.В., 2020
- Всероссийская проверочная работа, математика, 5 класс, 15 вариантов, типовые задания, Вольфсон Г.И., Мануйлов Д.А., Ященко И.В., 2020
- Всероссийская проверочная работа, математика, 6 класс, 25 вариантов, типовые задания, Виноградова О.А., Вольфсон Г.И., Ященко И.В., 2020
- XIX-XX турниры математических боёв имени Савина А.П., Грибалко А.В., Медников Л.Э., Шаповалов А.В., 2019
- Сборник математических задач, Основы финансовой грамотности, 10-11 классы, том 3, Новожилова Н.В., Моторо Н.П., Шалашова М.М., 2019
- Сборник математических задач, Основы финансовой грамотности, 1-4 классы, том 1, Новожилова Н.В., Моторо Н.П., Шалашова М.М., 2019
- Билеты письменных вступительных экзаменов в МФТИ за 2008 год, Методические разработки по физике и математике, 2008