Изучаем pandas, Хейдт М., 2018.
Библиотека pandas - популярный пакет для анализа и обработки данных на языке Python. Он предлагает эффективные, быстрые, высокопроизводительные структуры данных, которые позволяют существенно упростить работу. Данная книга познакомит вас с обширным набором инструментов, предлагаемых библиотекой pandas, - начиная с обзора загрузки данных с удаленных источников, выполнения численного и статистического анализа, индексации, агрегации и заканчивая визуализацией данных и анализом финансовой информации.
Издание предназначено всем разработчикам на языке Python, интересующимся обработкой данных.
Библиотека pandas и анализ данных.
Добро пожаловать на страницы книги «Изучаем pandas»! В этой книге мы отправимся в путешествие, в ходе которого вы научитесь работать с pandas, библиотекой анализа данных с открытым исходным кодом, предназначенной для языка программирования Python. Библиотека pandas предлагает высокопроизводительные и простые в использовании структуры данных и инструменты анализа, созданные с помощью языка Python. Библиотека pandas привнесла в Python массу полезных инструментов, взяв их из языка статистического программирования R, в частности объекты data frame (датафрейм), пакеты R, например plyr и reshape2, и разместила их в одной библиотеке, которую вы можете использовать в среде Python.
В первой главе мы посвятим время базовому знакомству с библиотекой pandas и тому, как она вписывается в обширную картину анализа данных. Вместо того чтобы полностью сосредоточиться на конкретных аспектах использования библиотеки pandas, эта глава призвана дать читателю ощущение своего места в обширной картине анализа данных. Цель состоит в том, чтобы при изучении библиотеки pandas вы также узнали о том, зачем нужны все эти различные функции, выполняющие задачи анализа данных.
Оглавление.
Предисловие.
Глава 1. Библиотека pandas и анализ данных.
Глава 2. Запуск библиотеки pandas.
Глава 3. Представление одномерных данных с помощью объекта Series.
Глава 4. Представление табличных и многомерных данных с помощью объекта DataFrame.
Глава 5. Выполнение операций над объектом DataFrame и его содержимым.
Глава 6. Индексация данных.
Глава 7. Категориальные данные.
Глава 8. Численные и статистические методы.
Глава 9. Загрузка данных.
Глава 10. Приведение данных в порядок.
Глава 11. Объединение, связывание и изменение формы данных.
Глава 12. Агрегирование данных.
Глава 13. Анализ временных рядов.
Глава 14. Визуализация.
Глава 15. Анализ исторических котировок акций.
Приложение 1. Советы по оптимизации вычислений в библиотеке pandas.
Приложение 2. Улучшение производительности pandas (из официального пособия по библиотеке pandas).
Приложение 3. Используем pandas для больших данных.
Приложение 4. Пример предварительной подготовки данных в pandas.
Предметный указатель.
Купить .
Теги: учебник по программированию :: программирование :: Хейдт
Смотрите также учебники, книги и учебные материалы:
- С++17 STL, Стандартная библиотека шаблонов, Галовиц Я., 2018
- C++, От ламера до программера, Эллайн А., 2015
- Легкий способ выучить Java, Пейн Б., 2019
- Angular и TypeScript, Сайтостроение для профессионалов, Файн Я., Моисеев А., 2018
- Python 3, Самое необходимое, Прохоренок Н.А., Дронов В.А., 2019
- Построение систем машинного обучения на языке Python, Луис П.К., Вилли Р., 2016
- Head First, Паттерны проектирования, Обновленное юбилейное издание, Фримен Э., Робсон Э., Сьерра К., Бейтс Б., 2018
- Разработка операционной системы и компилятора, проект Оберон, Вирт Н., Гуткнехт Ю., 2012