Курс высшей математики, Том 4, Часть 2, Смирнов В.И., 1981.
В предисловии ко второму изданию пятого тома (1959 г.) Владимир Иванович Смирнов писал, что «предполагается выпуск шестого тома с изложением некоторых вопросов современной теории дифференциальных операторов с одной и несколькими независимыми переменными». Он хотел, чтобы я была соавтором этого нового тома. Однако разные дела и обстоятельства помешали осуществлению этого намерения, и было решено ограничиться расширением четвертого тома. Для этого во второй том была включена теория интеграла Лебега и пространство L2, а четвертый том был разбит на две части (книги).

Нелинейные уравнения первого порядка.
Мы переходим к рассмотрению уравнений с частными производными первого порядка в общем случае. Как и для рассмотренных выше линейных уравнений, мы сначала будем предполагать, что имеются лишь две независимые переменные. Уравнение с частными производными первого порядка для функции от двух независимых переменных имеет вид F(x, у, и, р, q) = 0.
Выясним прежде всего геометрический смысл написанного уравнения. В любой фиксированной точке (х, у, и) уравнение (59) представляет собою соотношение между р и q, т. е. соотношение между направляющими косинусами нормали к поверхности. Удовлетворяющие этому соотношению нормали образуют некоторую коническую поверхность с вершиной (х, у, и). Плоскости, проходящие через точку (х, у, и) и перпендикулярные к образующим этого конуса, представляют собою возможные положения касательной плоскости в фиксированной точке (х, у, и) к искомым интегральным поверхностям. Это семейство плоскостей, так же как и семейство образующих конуса нормалей, будет зависеть от одного параметра. Огибающая этого семейства плоскостей будет представлять собою новый конус, который мы назовем конусом Т. Уравнение (59) эквивалентно, таким образом, заданию в каждой точке пространства конуса T, а искомая интегральная поверхность уравнения (59) должна обладать тем свойством, что в каждой ее точке касательная плоскость должна касаться конуса T, соответствующего этой точке.
Купить .
Теги: учебник по высшей математике :: высшая математика :: Смирнов