Сборник задач может служить пособием для самостоятельной подготовки к олимпиадам по математике.
Сборник составлен из задач, предлагавшихся в последние годы на математических олимпиадах г. Самары: САММАТ, университета Наяновой, олимпиады СамГУ и СамГТУ для выпускников. К большинству задач даны краткие указания. Наиболее сложные задачи снабжены подробными решениями.
Задачник может быть рекомендован учащимся старших классов, преподавателям математики, а также лицам, интересующимся нестандартными задачами.
Содержание
Предисловие.
Командные соревнования по математике САММ AT
САММАТ-93
САММАТ-94
САММАТ-95
САММАТ-96
САММАТ-97
Математические олимпиады «Университета Наяновой»
Олимпиада 1993 года
Олимпиада 1994 года
Летняя школа 1994 года
Олимпиада 1995 года
Олимпиада 1996 года
Олимпиады Самарского Государственного Университета
Олимпиада СамГУ-1996.
Олимпиада СамГУ-1997.
Математические олимпиады Технического Университета
Олимпиада СамГТУ-1995
Олимпиада СамГТУ-1996
Олимпиада СамГТУ-1997
Решения, Указания. Ответы
Примеры.
1. В случае чётного п все косточки домино могут быть выложены в одну цепочку. Такую укладку нетрудно осуществить. Если же п нечётно, то каждое из чисел от 0 до п встречается уже нечётное число раз. При составлении цепочки каждое число, кроме двух стоящих на концах цепочки, встречается чётное число раз, поскольку на стыке двух косточек стоят одинаковы числа. Значит, останется не меньше n - 1 чисел (заметим, что чисел от 0 до п ровно n+ 1). Поэтому останется не меньше (n-1)/2 косточек. Осталось посчитать общее количество косточек и вычесть из него (n-1)/2. Общее количество косточек равно ((n+2)(n+1))/2 поэтому искомое число равно (n²+2n+3)/2 Необходимую расстановку этих косточек нетрудно осуществить.
2. Если мальчик пробежит 3/8 моста вперёд, то автомобиль окажется в начале моста. За то время, пока мальчик пробежит оставшуюся 1/4 часть моста, автомобиль проедет весь мост, значит, мальчик бегает со скоростью в четыре раза меньше скорости автомобиля, т. е. 15 км/ч.
3. Разобьём монеты на две кучки по три монеты и взвесим их. Если чаши уравновесятся, то обе фальшивые монеты находятся в одной кучке (и в этой кучке все три монеты разного веса), а в другой кучке все монеты настоящие. В этом случае вторым взвешиванием любых двух монет из одной кучки мы определяем, в какой из них фальшивые монеты. За два оставшихся взвешивания сравниваем две из трёх монет из кучки с фальшивыми монетами с настоящей монетой из другой кучки и окончательно определяем фальшивые монеты. В другом случае, если чаши не уравновесятся, известно, в какой кучке более тяжёлая монета, а в какой более лёгкая. Рассмотрим более тяжёлую кучку. Взвесим любые две монеты из этой кучки. Если их вес одинаков, то третья монета фальшивая, если разный, то фальшивой является более тяжёлая монета. Аналогично определяется лёгкая монета. Во втором случае достаточно трёх взвешиваний.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998 - djvu - depositfiles.
Скачать книгу Самарские олимпиады, Андреев А.А., Люлев А.И., Савин А.Н., Саушкин М.Н., 1998 - djvu - Яндекс.Диск.
Дата публикации:
Теги: математика :: задачи по математике :: Андреев :: Люлев :: Савин :: Саушкин
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Математика, итоговая аттестация, 1-4 класс, Тестовые тренировочные задания, Васильева О.Е., 2012
- ГИА 2013, математика, 9 класс Тренировочная работа №3
- ГИА 2013, математика, 9 класс Тренировочная работа №2
- ГИА 2013, математика, 9 класс Диагностическая работа №2
Предыдущие статьи:
- ГИА 2013, математика, 9 класс, Предэкзаменационная работа №1, варианты 1-2, с ответами, март 2013
- Математическая индукция, Шень А., 2007
- Шедевры школьной математики, книга 1, Задачи с решениями, Кушнир И., 1995
- Шедевры школьной математики, книга 2, Задачи с решениями, Кушнир И., 1995