Математический анализ, Дифференциальное исчисление, Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г., 1978

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Математический анализ, Дифференциальное исчисление, Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г., 1978.

    Настоящее пособие является непосредственным продолжением книги Н. Я. Виленкина и Е. С. Куницкой «Математический анализ. Введение в анализ». Оно содержит изложение курса дифференциального исчисления и его приложений к исследованию функций.
Значение этого материала для будущего учителя определяется в первую очередь тем, что соответствующие вопросы по новой программе изучаются в средней школе. Одна из задач пособия — выяснение основных понятий дифференциального исчисления, необходимых для школьного преподавания, строгое доказательство утверждений, которые в школе лишь поясняются. В связи с этим большое внимание в пособии уделяется естественнонаучным и геометрическим истокам вводимых понятий; вопросы техники дифференцирования играют подчиненную роль.

Математический анализ, Дифференциальное исчисление, Виленкин Н.Я., Куницкая Е.С., Мордкович А.Г., 1978


Понятие производной n-го порядка.
Пусть на некотором множестве X определена дифференцируемая функция у = f (х). Производная f' (х) этой функции, рассматриваемая на множестве X, является функцией от х. Следовательно, можно говорить о производной полученной функции, т. е. о производной от первой производной. Если она существует, то ее называют производной второго порядка функции у = f (х) или, короче, второй производной и обозначают у" или f" (х). Значит, по определению у" = (у')'.

Аналогично, если существует производная от второй производной, то она называется третьей производной и обозначается у'" или (х). Значит, по определению у'" = (у")'.

Вообще, производной n-го порядка называют производную от производной (n—1)-го порядка. Производную n-го порядка обозначают у(n) или f(n) (х).

ОГЛАВЛЕНИЕ.
Предисловие.
Глава 1 ДИФФЕРЕНЦИРУЕМЫЕ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ. ПРОИЗВОДНАЯ.
§1. Приращение функции.
1. Приращение функции (5).
2. Определение непрерывности функции в точке «на языке приращений» (6).
§2. Дифференцируемость функции в точке.
1. Определение дифференцируемости функции в точке (8).
2. Связь между непрерывностью и дифференцируемостью функции в точке (10).
3. Производная и дифференциал (12).
4. Односторонние и бесконечные производные (15).
§3. Применения производной и дифференциала для решения геометрических и физических задач.
1. Задача» о проведении касательной к графику функции. Геометрический смысл производной и дифференциала (18).
2. Геометрические приложения производной (22).
3. Применения производной в физических задачах. Механический смысл производной (24).
§4. Дифференцирование операций.
1. Дифференцирование линейной комбинации конечного числа дифференцируемых функций (28).
2. Дифференцирование произведения (31).
3. Дифференцирование частного (33).
§5. Дифференцирование сложной функции.
1. Дифференцируемость сложной функции (37).
2. Инвариантность формы записи дифференциала (40).
§6. Дифференцирование элементарных функций.
1. Дифференцирование тригонометрических функций (42).
2. Дифференцирование обратной функции (45).
3. Дифференцирование обратных тригонометрических функций (46).
4. Дифференцирование показательной и логарифмической функций (48).
5. Дифференцирование гиперболических функций (52).
6. Сводка правил и формул дифференцирования (53).
7. Логарифмическое дифференцирование (54).
§7. Производные и дифференциалы высших порядков.
1. Понятие производной n-го порядка (59).
2. Механический смысл второй производной (62).
3. Натуральная степень бинома (формула Ньютона) (63).
4. Свойства производной n-го порядка (66).
5. Дифференциалы высшего порядка (69).
Глава 2 ПРИМЕНЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ.
§1. Связь между ходом изменения функции и ее производной.
1. Возрастание и убывание функций (73).
2. Экстремумы функции (74).
§2. Теорема Лагранжа и ее следствия.
1. Леммы о знаке приращения (77).
2. Теорема Ролля (78).
3. Теорема Лагранжа (80).
4. Условие постоянства функции (82).
§3. Исследование функций.
1. Возрастание и убывание функций (86).
2. Исследование функций на экстремум с помощью первой производной (89).
3. Использование второй производной для исследования функций на экстремум (93).
4. Нахождение наибольшего и наименьшего значений функции на данном отрезке (94).
§4. Выпуклые функции.
1. Определение выпуклости (100).
2. Достаточные условия выпуклости (105).
3. Точки перегиба (106).
§5. Применение дифференциального исчисления к доказательству неравенств и решению уравнений.
1. Доказательство неравенств (111).
2. Приближенное решение уравнений (115).
§6. Применение производных для вычисления пределов функций.
1. Теорема Коши (120).
2. Правило Лопиталя (121).
3. Сравнение быстроты роста функций (129).
§7. Построение графиков функций.
§8. Кривые на плоскости.
1. Примеры параметрического задания кривых (141).
2. Жордановы кривые (143).
3. Связь между различными видами уравнений линий (144).
4. Дифференцирование параметрически заданных функций (146).
5. Полярное уравнение кривой (147).
6. Производная второго порядка для параметрически заданной функции (148).
7. Построение кривых, заданных параметрическими уравнениями (149).
8. Построение кривых, заданных полярными уравнениями (152).

Купить .
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-01-22 05:12:45