Задачи по функциональному анализу, Бородин П.А., Савчук А.М., Шейпак И.А., 2017

По кнопке выше «Купить бумажную книгу» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно искать похожие материалы на других сайтах.

On the buttons above you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.

Ссылки на файлы заблокированы по запросу правообладателей.

Links to files are blocked at the request of copyright holders.


Задачи по функциональному анализу, Бородин П.А., Савчук А.М., Шейпак И.А., 2017.

   Задачник содержит более 1300 задач по всем основным разделам функционального анализа, входящим в учебную программу механико-математического факультета МГУ им. М. В. Ломоносова. Почти все задачи, в которых требуется что-то найти, снабжены ответами, а некоторые из остальных задач—указаниями и комментариями.
Для студентов и аспирантов математических специальностей университетов.

Задачи по функциональному анализу, Бородин П.А., Савчук А.М., Шейпак И.А., 2017


Примеры.
Доказать, что в метрическом пространстве следующие условия эквивалентны:
(1) множество замкнуто;
(2) множество содержит все свои граничные точки;
(3) множество содержит все свои предельные точки.

Пусть X — произвольное метрическое пространство. Доказать, что любые объединения и конечные пересечения открытых множеств открыты. Привести пример бесконечной системы открытых множеств, пересечение которых не открыто.

Пусть неполное метрическое пространство (Х,р) плотно в метрическом пространстве (Y,р). Доказать, что если любая фундаментальная последовательность точек множества X имеет предел в пространстве Y, то (Y,р) является пополнением пространства (Х,р).

ОГЛАВЛЕНИЕ.
Предисловие.
Список пространств.
Глава 1. Метрические пространства.
§1.1. Основные понятия и свойства.
§1.2. Последовательности в метрических пространствах. Полнота.
§1.3. Всюду плотные множества. Теорема Бэра.
§1.4. Отображения метрических пространств.
§1.5. Теорема о неподвижной точке.
Глава 2. Нормированные пространства.
§2.1. Основные понятия и свойства. Примеры нормированных пространств.
§2.2. Множества и последовательности в нормированных пространствах. Подпространства.
§2.3. Банаховы пространства.
§2.4. Конструкции банаховых пространств. Прямые суммы подпространств.
§2.5. Сепарабельность нормированных пространств.
Глава 3. Гильбертовы пространства.
§3.1. Основные понятия и свойства. Примеры евклидовых и гильбертовых пространств.
§3.2. Множества в гильбертовых пространствах.
§3.3. Ортонормированные системы и базисы в гильбертовых пространствах.
Глава 4. Компактные множества.
§4.1. Свойства компактных множеств.
§4.2. Компактные множества в конкретных нормированных пространствах.
Глава 5. Линейные непрерывные функционалы.
§5.1. Основные свойства. Вычисление норм.
§5.2. Теорема Хана—Банаха.
§5.3. Сопряжённые пространства.
§5.4. Второе сопряжённое пространство. Рефлексивность.
Глава 6. Линейные операторы.
§6.1. Определения и основные примеры операторов.
§6.2. Различные свойства операторов.
§6.3. Операторы в гильбертовых пространствах.
§6.4. Пространство операторов.
§6.5. Дифференцирование в банаховых пространствах.
Глава 7. Теорема Банаха—Штейнгауза. Слабая сходимость векторов, функционалов и операторов.
§7.1. Теорема Банаха—Штейнгауза.
§7.2. Слабая сходимость: основные свойства. Критерии слабой сходимости.
§7.3. *-слабая сходимость в сопряженном пространстве.
§7.4. Различные виды сходимости в пространстве операторов.
Глава 8. Сопряжённые операторы.
§8.1. Сопряженные операторы в банаховом пространстве.
§8.2. Сопряжённые операторы в гильбертовом пространстве. Унитарные и нормальные операторы.
Глава 9. Обратный оператор.
§9.1. Теорема Банаха об обратном операторе. Примеры.
§9.2. Свойства обратимых операторов.
Глава 10. Базисы.
§10.1. Полные и минимальные системы векторов.
§10.2. Базисы Шаудера.
§10.3. Базисы в гильбертовых пространствах.
Глава 11. Компактные операторы и теория Фредгольма.
§11.1. Общие свойства компактных операторов.
§11.2. Компактные операторы в конкретных пространствах
§11.3. Компактные операторы в гильбертовых пространствах.
§11.4. Теория Фредгольма.
§11.5. Интегральные уравнения.
Глава 12. Основы спектральной теории ограниченных операторов в банаховых пространствах.
§12.1. Спектр.
§12.2. Спектр компактного оператора.
§12.3. Теорема Гильберта—Шмидта.
§12.4. Основные типы операторов на примерах.
Глава 13. Функциональное исчисление и спектральная теорема.
§13.1. Функциональное исчисление ограниченного оператора.
§13.2. Функциональное исчисление, построенное по самосопряженному оператору.
§13.3. Спектральная теорема в терминах интеграла Лебега—Стилтьеса.
§13.4. Спектральная теорема в терминах оператора умножения.
Глава 14. Топологические, линейные топологические и полинормированные пространства.
§14.1. Топологические пространства.
§14.2. Линейные топологические пространства.
§14.3. Локально выпуклые пространства как полинормированные пространства.
§14.4. Слабая топология в нормированном пространстве.
§14.5. *-слабая топология в сопряжённом пространстве.
Глава 15. Пространства пробных (основных) функций.
Глава 16. Обобщенные функции.
§16.1. Основные понятия.
§16.2. Операции над обобщёнными функциями.
Глава 17. Преобразование Фурье.
§17.1. Преобразование Фурье обычных функций.
§17.2. Преобразование Фурье обобщённых функций.
Глава 18. Свёртка.
§18.1. Свёртка функций в L1(R).
§18.2. Оператор свёртки в L2(R).
§18.3. Свёртка обобщённых функций.
Глава 19. Обобщённые функции нескольких переменных.
§19.1. Дополнительные операции над обобщёнными функциями.
§19.2. Фундаментальные решения.
Ответы.
Предметный указатель.
Список литературы.

Купить .

Купить .
Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-01-22 01:02:41