Глубокое обучение на Python, Шолле Ф., 2018.
Глубокое обучение — Deep learning — это набор алгоритмов машинного обучения, которые моделируют высокоуровневые абстракции в данных, используя архитектуры, состоящие из множества нелинейных преобразований. Согласитесь, эта фраза звучит угрожающе. Но всё не так страшно, если о глубоком обучении рассказывает Франсуа Шолле, который создал Keras — самую мощную библиотеку для работы с нейронными сетями. Познакомьтесь с глубоким обучением на практических примерах из самых разнообразных областей. Книга делится на две части: в первой даны теоретические основы, вторая посвящена решению конкретных задач. Это позволит вам не только разобраться в основах DL, но и научиться использовать новые возможности на практике.
Обучение — это путешествие длиной в жизнь, особенно в области искусственного интеллекта, где неизвестностей гораздо больше, чем определенности.
«Глубина» глубокого обучения.
Глубокое обучение — это особый раздел машинного обучения: новый подход к поиску представления данных, делающий упор на изучение последовательных слоев (или уровней) все более значимых представлений. Под глубиной в глубоком обучении не подразумевается более глубокое понимание, достигаемое этим подходом; идея заключается в многослойном представлении. Количество слоев, на которые делится модель данных, называют глубиной модели. Другими подходящими названиями для этой области машинного обучения могли бы служить: многослойное обучение и иерархическое обучение. Современное глубокое обучение часто вовлекает в процесс десятки и даже сотни последовательных слоев представления — и все они автоматически определяются под воздействием обучающих данных. Между тем другие подходы к машинному обучению ориентированы на изучении одного-двух слоев представления данных; по этой причине их иногда называют поверхностным обучением.
В глубоком обучении такие многослойные представления изучаются (почти всегда) с использованием моделей, так называемых нейронных сетей, структурированных в виде слоев, наложенных друг на друга. Термин нейронная сеть заимствован из нейробиологии, тем не менее, хотя некоторые основополагающие идеи глубокого обучения отчасти заимствованы из науки о мозге, модели глубокого обучения не являются моделями мозга. Нет никаких доказательств, что мозг реализует механизмы, подобные механизмам, используемым в современных моделях глубокого обучения. Вам могут встретиться научно-популярные статьи, в которых утверждается, что глубокое обучение работает подобно мозгу или моделирует работу мозга, но в действительности это не так. Было бы неправильно и контрпродуктивно заставлять начинающих освоение этой области думать, что глубокое обучение каким-то образом связано с нейробиологией; вам не нужно представление «как наш мозг», и вы также можете забыть все, что читали о гипотетической связи между глубоким обучением и биологией. Намного продуктивнее считать глубокое обучение математической основой для изучения представлений данных.
Содержание.
ЧАСТЬ I. ОСНОВЫ ГЛУБОКОГО ОБУЧЕНИЯ.
Глава 1. Что такое глубокое обучение?.
Глава 2. Прежде чем начать: математические основы нейронных сетей.
Глава 3. Начало работы с нейронными сетями.
Глава 4. Основы машинного обучения.
ЧАСТЬ II. ГЛУБОКОЕ ОБУЧЕНИЕ НА ПРАКТИКЕ.
Глава 5. Глубокое обучение в технологиях компьютерного зрения.
Глава 6. Глубокое обучение для текста и последовательностей.
Глава 7. Лучшие практики глубокого обучения продвинутого уровня.
Глава 8. Генеративное глубокое обучение.
Глава 9. Заключение.
Приложение А. Установка Keras и его зависимостей в Ubuntu.
Приложение В. Запуск Jupyter Notebook на экземпляре ЕС2 GPU.
Купить .
Теги: учебник по программированию :: программирование :: Шолле :: Python
Смотрите также учебники, книги и учебные материалы:
- Я иду на урок информатики, Задачи по программированию, 7-11 классы, книга для учителя, Златопольский Д.М., 2001
- Московские олимпиады по программированию, Наумов Б.Н., Брудно А.Л., Каплан Л.И., 1990
- Основы алгоритмизации и программирования в средней школе, Батан Л.В., 2012
- Программирование для детей на языке Scratch, Банкрашкова А., 2017
- Qt 5.10, Профессиональное программирование на C++, Шлее М., 2018
- Чистая архитектура, Искусство разработки программного обеспечения, Мартин Р., 2018
- Хакинг, Искусство эксплойта, Эриксон Д., 2018
- Head First, Паттерны проектирования, Обновленное юбилейное издание, Фримен Э., Робсон Э., Сьерра К., Бейтс Б., 2018