Сборник задач по дифференциальным уравнениям, Филиппов А.Ф., 2000.
Сборник содержит материалы для упражнений по курсу дифференциальных уравнений для университетов и технических ВУЗов с повышенной математической программой. В настоящее издание добавлены задачи, предлагавшиеся на письменных экзаменах на механико-математическом факультете МГУ.
ГЕОМЕТРИЧЕСКИЕ И ФИЗИЧЕСКИЕ ЗАДАЧИ.
1. Чтобы решить приведенные ниже геометрические задачи, надо построить чертеж, обозначить искомую кривую через у = у(х) (если задача решается в прямоугольных координатах) и выразить все упоминаемые в задаче величины через x, у и у. Тогда данное в условии задачи соотношение превращается в дифференциальное уравнение, из которого можно найти искомую функцию у (x).
2. В физических задачах надо прежде всего решить, какую из величин взять за независимое переменное, а какую — за искомую функцию. Затем надо выразить, на сколько изменится искомая функция у, когда независимое переменное х получит приращение х, т. е. выразить разность у(х + х) - у(х) через величины, о которых говорится в задаче. Разделив эту разность на х и перейдя к пределу при х — 0, получим дифференциальное уравнение, из которого можно найти искомую функцию. В большинстве задач содержатся условия, с помощью которых можно определить значения постоянных, входящих в общее решение дифференциального уравнения. Иногда дифференциальное уравнение можно составить более простым путем, воспользовавшись физическим смыслом производной (если независимое переменное — время t, то dy/dt есть скорость изменения величины у).
СОДЕРЖАНИЕ
Предисловие
§1. Изоклины.
Составление дифференциального уравнения семейства кривых
§2. Уравнения с разделяющимися переменными
§3. Геометрические и физические задачи
§4. Однородные уравнения
§5. Линейные уравнения первого порядка
§6. Уравнения в полных дифференциалах. Интегрирующий множитель
§7. Существование и единственность решения
§8. Уравнения, не разрешенные относительно производной
§9. Разные уравнения первого порядка
§10. Уравнения, допускающие понижение порядка
§11. Линейные уравнения с постоянными коэффициентами
§12. Линейные уравнения с переменными коэффициентами
§13. Краевые задачи
§14. Линейные системы с постоянными коэффициентами
§15. Устойчивость
§16. Особые точки
§17. Фазовая плоскость
§18. Зависимость решения от начальных условий и параметров. Приближенное решение дифференциальных уравнений
§19. Нелинейные системы
§20. Уравнения в частных производных первого порядка
§21. Существование и единственность решения
§22. Общая теория линейных уравнений и систем
§23. Линейные уравнения и системы с постоянными коэффициентами
§24. Устойчивость
§25. Фазовая плоскость
§26. Дифференцирование решения по параметру и по начальным условиям
§27. Уравнения с частными производными первого порядка
Ответы
Ответы к добавлению
Таблицы показательной функции и логарифмов.
Купить.
Теги: задачник по математике :: математика :: Филиппов :: изоклины
Смотрите также учебники, книги и учебные материалы:
- Математика, 5 класс, рабочая тетрадь №1, Зубарева И.И., 2012
- Сборник задач по математике для поступающих во ВТУЗы, Сканави М.И., 2013
- ГИА, математика, 9 класс, тематические тестовые задания, Лаппо Л.Д., Попов М.А., 2013
- ГИА, математика, 9 класс, практикум, Лаппо Л.Д., Попов М.А., 2013
- Решебник, математика, 9 класс, подготовка к ГИА 2013, Лысенко Ф.Ф., Кулабухов С.Ю., 2012
- Шпаргалка по математике
- Четвертные контрольные работы по математике, 1-4 класс, Узорова О.В., Нефедова Е.А., 2012
- Математика для старшеклассников, Нестандартные методы решения задач, Супрун В.П., 2009