Математика, Подготовка к ЕГЭ 2011, Решебник, Часть 2, Лысенко Ф.Ф., Кулабухов С.Ю., 2010.
Данный решебник предназначен для самостоятельной или коллективной подготовки школьников к ЕГЭ. Он является логическим продолжением основной книги «Математика. Подготовка к ЕГЭ-2011» под редакцией Ф.Ф. Лысенко, СЮ. Кулабухова.
Решебник состоит из двух частей.
Часть 2 — пособие в электронном виде. Оно содержит решения задач, вошедших в главу «Сборник задач для подготовки к ЕГЭ» основной книги.
Решебник поможет выпускнику быстро освоить весь необходимый материал и успешно подготовиться к ЕГЭ. Также он может быть полезен учителям и методистам.
Пример.
Построим общую часть куба и правильной треугольной призмы. Проекцией куба на плоскость, перпендикулярную его диагонали, является правильный шестиугольник, поэтому если одно из ребер правильной треугольной призмы совпадает с диагональю куба, то два других боковых ребра призмы проходят через середины М и N ребер A1D1 и C1D1 куба (см. рис. 431).
Боковая грань правильной треугольной призмы, параллельная диагонали куба, пересекает ребро куба DD1 в точке К, причем FK || B1D, где F — точка пересечения B1D1 и MN. Поэтому общей частью куба и призмы является шестигранник с вершинами DB1MNK. Объем общей части можно представить в виде разности объемов V1 и V2 пирамид DMB1ND1 и KMND1.
Пусть SABC — правильная треугольная пирамида. Треугольник ABC (основание исходной пирамиды) — правильный. Точка О — его центр. Прямая AM (проходящая через О) и медиана, и высота треугольника ABC. Треугольник CSB (боковая грань пирамиды) — равнобедренный. SM — его высота (по теореме о трёх перпендикулярах). Пирамида ONLKQ — правильная (по условию). Значит, в основании ее лежит квадрат NLKQ, который вписан в ACSB (по условию). Это возможно, так как CSВ — равнобедренный. При этом BQ = CN; NM = МQ. Высота ОР этой пирамиды попадает в центр квадрата, и она перпендикулярна всей плоскости CSB. Угол между основанием и боковой гранью пирамиды (любой) есть угол ОМS.
Купить книгу Математика, Подготовка к ЕГЭ 2011, Решебник, Часть 2, Лысенко Ф.Ф., Кулабухов С.Ю., 2010 .
Купить книгу Математика, Подготовка к ЕГЭ 2011, Решебник, Часть 2, Лысенко Ф.Ф., Кулабухов С.Ю., 2010 .
Теги: ЕГЭ по математике :: математика :: Лысенко :: Кулабухов
Смотрите также учебники, книги и учебные материалы:
- Алгебра и начала анализа, 11 класс, 180 диагностических вариантов, Мирошин В.В., 2012
- ЕГЭ, математика, Задание С6, Шевкин А.В., Пукас Ю.О., 2011
- Алгебра и начала анализа, 11 класс, 180 диагностических вариантов, Мирошин, 2012
- Математика, Подготовка к ЕГЭ 2011, решебник, Лысенко Ф.Ф., Кулабухов С.Ю., 2010
- ЕГЭ, практикум по математике, Подготовка к выполнению части С, Сергеев И.Н., Панферов В.С., 2012
- ЕГЭ 2012, математика, задача с2, Смирнов В.А.
- ЕГЭ 2011, математика, задача с2, Смирнов В.А.
- ЕГЭ 2013, математика, оптимальный банк заданий, Семенов А.В.