Сборник задач и упражнений по математическому анализу - Демидович Б.П. - 1997
В сборник включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ; дифференциальное исчисление фукнций одной переменной; неопределенный и определенный интегралы; ряды; дифференциальное исчисление функций нескольких переменных; интегралы, зависящие от параметра; кратные и криволинейные интегралы. Почти ко всем задачам даны ответы. В приложении помешены (таблицы.
Для студентов физических и механико-математических специальностей высших учебных заведений.
Сборник задач и упражнений по математическому анализу: Учебное пособие. - 13-е изд., испр. - М.: Изд-во Моск. ун-та, ЧеРо, 1997. - 624 с.
ISBN 5-211-03645-Х
УДК 517(075.8)
ББК 22.161
Д30
Купить книгу Сборник задач и упражнений по математическому анализу - Демидович Б.П. - 1997
ОГЛАВЛЕНИЕ
ЧАСТЬ ПЕРВАЯ
ФУНКЦИИ ОДНОЙ НЕЗАВИСИМОЙ ПЕРЕМЕННОЙ
Отдел I. Введение в анализ
§ 1. Вещественные числа
§ 2. Теория последовательностей
§ 3. Понятие функции
§ 4. Графическое изображение функции
§ 5. Предел функции
§ 6. О-символика
§ 7. Непрерывность функции
§ 8. Обратная функция. Функции, заданные параметрически
§ 9. Равномерная непрерывность функции
§ 10. Функциональные уравнения
Отдел II. Дифференциальное исчисление функций одной переменной
§ 1. Производная явной функции
§ 2. Производная обратной функции. Производная функции, заданной параметрически. Производная функции, заданной в неявном виде
§ 3. Геометрический смысл производной
§ 4. Дифференциал функции
§ 5. Производные и дифференциалы высших порядков
§ 6. Теоремы Ролля, Лагранжа и Коши
§ 7. Возрастание и убывание функции. Неравенства
§ 8. Направление вогнутости. Точки перегиба
§ 9. Раскрытие неопределенностей
§ 10. Формула Тейлора.
§ 11. Экстремум функции. Наибольшее и наименьшее значения функции
§ 12. Построение графиков функции по характерным точкам
§ 13. Задачи на максимум и минимум функций
§ 14. Касание кривых. Круг кривизны. Эволюта
§ 15. Приближенное решение уравнений
Отдел III Неопределенный интеграл
§ 1. Простейшие неопределенные интегралы
§ 2. Интегрирование рациональных функций
§ 3. Интегрирование некоторых иррациональных функций
§ 4. Интегрирование тригонометрических функций
§ 5. Интегрирование различных трансцендентных функций
§ 6. Разные примеры на интегрирование функций
Отдел IV. Определенный интеграл
§ 1. Определенный интеграл как предел суммы
§ 2. Вычисление определенных интегралов с помощью неопределенных
§ 3. Теоремы о среднем
§ 4. Несобственные интегралы
§ 5. Вычисление площадей
§ 6. Вычисление длин дуг
§ 7. Вычисление объемов
§ 8. Вычисление площадей поверхностей вращения
§ 9. Вычисление моментов. Координаты центра тяжести
§ 10. Задачи из механики и физики
§ 11. Приближенное вычисление определенных интегралов
Отдел V. Ряды
§ 1. Числовые ряды. Признаки сходимости знакопостоянных рядов
§ 2. Признаки сходимости знакопеременных рядов
§ 3. Действия над рядами
§ 4. Функциональные ряды
§ 5. Степенные ряды
§ 6. Ряды Фурье
§ 7. Суммирование рядов
§ 8. Нахождение определенных интегралов с помощью рядов
§ 9. Бесконечные произведения
§ 10. Формула Стирлинга
§ 11. Приближение непрерывных функций многочленами
ЧАСТЬ ВТОРАЯ
ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
Отдел VI. Дифференциальное исчисление функций нескольких переменных
§ 1. Предел функции. Непрерывность
§ 2. Частные производные. Дифференциал функции
§ 3. Дифференцирование неявных функций
§ 4. Замена переменных
§ 5. Геометрические приложения
§ 6. Формула Тейлора
§ 7. Экстремум функции нескольких переменных
Отдел VII. Интегралы, зависящие от параметра
§ 1. Собственные интегралы, зависящие от параметра
§ 2. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов
§ 3. Дифференцирование н интегрирование несобственных интегралов под знаком интеграла
§ 4. Эйлеровы интегралы
§ 5. Интегральная формула Фурье
Отдел VIII. Кратные и криволинейные интегралы
§ 1. Двойные интегралы
§ 2. Вычисление площадей
§ 3. Вычисление объемов
§ 4. Вычисление площадей поверхностей
§ 5. Приложения двойных интегралов к механике
§ 6. Тройные интегралы
§ 7. Вычисление объемов с помощью тройных интегралов
§ 8. Приложения тройных интегралов к механике
§ 9. Несобственные двойные и тройные интегралы
§ 10. Многократные интегралы
§ 11. Криволинейные интегралы
§ 12. Формула Грина.
§ 13. Физические приложения криволинейных интегралов
§ 14. Поверхностные интегралы
§ 15. Формула Стокса
§ 16. Формула Остроградского
§ 17. Элементы теории поля
Ответы
Купить книгу Сборник задач и упражнений по математическому анализу - Демидович Б.П. - 1997
Теги: сборник задач :: Демидович :: скачать :: математический анализ :: мат-анализ :: сборник упражнений :: 1997 :: учебник :: пособие :: книга :: введение в анализ :: производная :: интеграл :: О-символика :: функция :: отображение :: действительные числа :: комплексные числа :: векторное пространство :: метрическое пространство :: предел последовательности :: предел :: функции :: непрерывность функции :: теорема Ролля :: теорема Лагранжа :: теорема Коши :: неравенства :: раскрытие неопределенностей :: формула Тейлора :: экстремум функции :: неопределенный интеграл :: интеграл Римана :: интеграл Стилтьеса :: ряды :: признак сходимости :: степенные ряды :: ряды Фурье :: дифференциал функции :: экстремум :: кратный интеграл :: криволинейный интеграл :: собственный интеграл :: несобственный интеграл :: эйлеровы интегралы :: интегральная формула Фурье :: интеграл Римана :: формула Остроградского :: формула Грина :: формула Стокса :: векторный анализ
Смотрите также учебники, книги и учебные материалы:
- Задачи вступительных экзаменов в МГУ по математике, Воронин В.П., Федотов М.В., 2000
- Подготовка к вступительным экзаменам в МГУ, Задачи устного экзамена по математике, Федотов М.В., Хайлов Е.Н.
- Нестандартные задачи по математике - Задачи с целыми числами, учебное пособие, Галкин Е.В. - 2005
- Как решать задачи по математике на вступительных экзаменах, Мельников И.И., Сергеев И.Н., 1990
- Полный сборник решений задач для поступающих в ВУЗы, группа В, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа Б, книга 2, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа Б, книга 1, Сканави М.И., 2003
- Полный сборник решений задач для поступающих в ВУЗы, группа А, Сканави М.И., 2003