Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983.

    В книге содержатся асимптотические методы решения линейных обыкновенных дифференциальных уравнений. Рассмотрен ряд важных физических приложений к задачам квантовой механики, распространения волн и др.
Для математиков, физиков, инженеров, а также для студентов и аспирантов университетов и инженерно-физических ВУЗов.

Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983

Особые точки линейных уравнений.
Рассмотрим линейную однородную систему с матрицей-функцией A (z), голоморфной в проколотой окрестности точки z = а. Если точка а является особой хотя бы для одного из элементов матрицы A(z), то а называется особой точкой матрицы A (z).
Точка z = а называется особой точкой системы (7), если она является особой точкой матрицы A (z).

В аналитической теории дифференциальных уравнений исследуется задача о структуре ФМ в окрестности полюса матрицы-функции А (z). Введена следующая классификация особых точек.

Точка а называется регулярной особой точкой системы (7), если матрица-функция Ф (z) (см. (9), (10)) имеет в точке а полюс (или голоморфна в этой точке). В противном случае особая точка а называется иррегулярной.

Эта классификация — непрямая; определение не позволяет по матрице системы А (z) установить характер особой точки. Аналогично классифицируются особые точки линейных однородных уравнений n-го порядка с мероморфными коэффициентами.

Одна из основных задач аналитической теории линейных дифференциальных уравнений — исследование структуры ФМ (или фундаментальной системы решений (ФСР) в случае скалярного уравнения) по матрице системы (соответственно по коэффициентам уравнения). Основные результаты, полученные в этом направлении, сформулированы в §§ 2, 3.

Оглавление
Предисловие
Глава I. Аналитическая теория дифференциальных уравнений
§ 1. Аналитичность решений систем обыкновенных дифференциальных уравнений
§ 2. Регулярные особые точки
§ 3. Иррегулярные особые точки
Глава II. Уравнения второго порядка на вещественной оси
§ 1. Преобразования уравнений второго порядка
§ 2. ВКВ-оценки
§ 3. Асимптотика решений уравнения второго порядка при больших значениях параметра
§ 4. Системы из двух уравнений, содержащее большой параметр
§ 5. Системы уравнений, близкие к диагональным
§ 6. Асимптотика решений при больших значениях аргумента
§ 7. Двойные асимптотики
§ 8. Контрпримеры
§ 9. Корни постоянной кратности
§ 10. Задачи на собственные значения
§ 11. Задача о рассеянии
Глава III. Уравнения второго порядка в комплексной плоскости
§ 1. Линии Стокса и области, ими ограниченные
§ 2. ВКБ-оценки в комплексной плоскости
§ 3. Уравнения с полиномиальными коэффициентами Асимптотика решений в большом
§ 4. Уравнения с целыми и мероморфнымн коэффициентами
§ 5. Асимптотика собственных значений оператора -d2/dx2 + y2q (х). Самосопряженные задачи
§ 6. Асимптотика дискретного спектра оператора -уn + y2q (х)у. Несамосопряженные задачи
§ 7. Задача на собственные значения с регулярными особыми точками
§ 8. Квазиклассическое приближение в задачах рассеяния
§ 9. Уравнения Штурма - Лиунилля с периодическим потенциалом
Глава IV. Уравнения второго порядка с точками поворота
§ 1. Простая точка поворота. Вещественный случай
§ 2. Простая точка поворота. Комплексный случай
§ 3. Некоторые эталонные уравнения
§ 4. Кратные и дробные точки поворота
§ 5. Слияние точки поворота и регулярной особой точки
§ 6. Кратная точка поворота. Комплексный случай
§ 7. Две близкие точки поворота
§ 8. Слияние нескольких точек поворота
Глава V. Уравнения и системы n-го порядка
§ 1. Уравнения и системы на конечном интервале
§ 2. Системы уравнений на конечном интервале
§ 3. Уравнения на бесконечном интервале
§ 4. Системы уравнений на бесконечном интервале
§ 5. Уравнения и системы в комплексной плоскости
§ 6. Точки поворота
§ 7. Задача о рассеянии, адиабатические инварианты и задача на собственные значения
§ 8. Примеры
Литература
Предметный указатель
Список сокращений.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать книгу Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983 - Яндекс Народ Диск.

Скачать книгу Асимптотические методы для линейных обыкновенных дифференциальных уравнений, Федорюк М.В., 1983 - depositfiles.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-19 21:35:27